
Science of Computer Programming 13 (1989/90) l-21

North-Holland

A METHOD FOR SOLVING SYNCHRONIZATION
PROBLEMS*

Gregory R. ANDREWS

Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA

Communicated by L. Lamport

Received August 1988

Revised June 1989

Abstract. This paper presents a systematic method for solving synchronization problems. The

method is based on viewing processes as invariant maintainers. First, a problem is defined and

the desired synchronization property is specified by an invariant predicate over program variables.

Second, the variables are initialized to make the invariant true and processes are annotated with

atomic assignments so the variables satisfy their definition. Then, atomic assignments are guarded

as needed so they are not executed until the resulting state will satisfy the invariant. Finally, the

resulting atomic actions are implemented using basic synchronization mechanisms. The method

is illustrated by solving three problems using semaphores. The solutions also illustrate three

general programming paradigms: changing variables, split binary semaphores, and passing the
baton. Additional synchronization problems and synchronization mechanisms are also discussed.’

1. Introduction

A concurrent program consists of processes (sequential programs) and shared

objects. The processes execute in parallel, at least conceptually. They interact by

using the shared objects to communicate with each other. Synchronization is the

problem of controlling process interaction.

Two types of synchronization arise in concurrent programs [3]. Mutual exclusion

involves grouping actions into critical sections that are never interleaved during

execution, thereby ensuring that inconsistent states of a given process are not visible

to other processes. Condition synchronization causes a process to be delayed until

the system state satisfies some specified condition. For example, communication

between a sender process and receiver process is often implemented using a shared

buffer. The sender writes into the buffer; the receiver reads from the buffer. Mutual

exclusion is used to ensure that a partially written message is not read. Condition

synchronization is used to ensure that a message is not overwritten, and that a

message is not read more than once.

Numerous synchronization mechanisms have been proposed, but to date there is

no systematic method for using any one of them to solve a given synchronization

* This work was supported by NSF Grant CCR-8701516

0167.6423/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)

2 G. R. Andrew

problem. Rather, the programmer typically proceeds in an ad hoc way until he or

she finds a path through the maze of possible solutions. Having found a candidate

solution, the programmer might then try to verify that it is correct. Such a posteriori

reasoning does not, however, provide much help in arriving at a solution.

This paper presents a systematic method that guides the development of solutions

to synchronization problems. The method is inspired by Dijkstra’s seminal work on

a calculus for deriving sequential programs [8] and by two Dijkstra notes on

programming with semaphores [9, lo]. It is also inspired by the observation that

synchronization can be viewed as the problem of maintaining a global invariant

[19]. In particular, starting with an assertion that specifies the desired synchroniz-

ation invariant, a sequence of steps is followed to derive a correct program that

maintains this invariant.

Section 2 presents the derivation method. Section 3 illustrates the approach by

deriving semaphore-based solutions to three familiar problems: critical sections,

producers/consumers, and readers/writers. The section also describes three impor-

tant programming techniques: changing variables, split binary semaphores, and

passing the baton. Finally, Section 4 discusses related work and the applicability

of the derivation method to other problems and other synchronization mechanisms.

2. Derivation method

The derivation method essentially reverses the steps employed in constructing an

assertional proof of a given program. Therefore it is appropriate first to review

relevant proof concepts. The focus is on safety properties, which assert that nothing

bad happens during execution. Later liveness properties are considered; these are

concerned with scheduling and assert that something good eventually happens.

A program state associates a value with each variable. Variables include those

explicitly defined by the programmer and those-like the program counter-that

are implicit. Execution of a sequential program results in a sequence of atomic

actions, each of which indivisibly transforms the state. Execution of a concurrent

program results in a sequence of atomic actions for each process. A particular

execution of a concurrent program results in a history, which is an interleaving of

the sequences of atomic actions produced by the processes.’ Note that the number

of possible histories is exponential in the number of atomic actions.

An abstract way to characterize the possible histories generated by a concurrent

program is to construct a correctness proof using a programming logic. A compact

way to present such a proof is by means of a proof outline, which consists of the

program text interspersed with assertions. An assertion is a predicate that character-

izes a set of states. In a proof outline, each atomic statement S is preceded and

’ Because the state transformation caused by an atomic action is indivisible, executing a set of atomic

actions in parallel is equivalent to executing them in some serial order.

A method for solving synchronization problems

followed by an assertion. The resulting triples, which are denoted

have the interpretation that if execution of S is begun in a state satisfying P, and

if S terminates, then the resulting state will satisfy Q. P is called the precondition

of S and Q is called the postcondition of S. S is thus viewed as a predicate transformer

since it transforms the state from one in which P is true to one in which Q is

true [8].

A proof outline of a concurrent program must meet two requirements. First, the

proof outline of each process must accurately characterize the effects of executing

that process in isolation as a sequential program. Second, the proof outlines of the

different processes must be interference-free [23]. In particular, for each pre- and

postcondition P in one process and every atomic action S in another process, P

must remain true if S is executed. Statement S will be executed only if its precondi-

tion, pre(S), is true. Hence, S will not interfere with P if the triple

{p Apre(S)l S IpI

is a theorem in the underlying programming logic.

The first requirement-a proof outline for each process-requires reasoning about

sequential execution. The second requirement-noninterference-addresses the

effects of concurrent execution. Thus, the key difference between concurrent pro-

gramming and sequential programming is controlling process interaction so as to

preclude interference.

In general, demonstrating noninterference involves checking each atomic action

against every assertion in other processes. This requires work polynomial in the

number of atomic actions. However, all commonly occurring safety properties can

be specified by a predicate, BAD, that must not be true of any state [19]. For

example, mutual exclusion is a safety property where a bad state would be one in

which two or more processes are in their critical section. If BAD characterizes the

states to be avoided, then a program satisfies the safety property specified by BAD

if TBAD is an invariant: an assertion that is true before and after every atomic

action and hence is true of every program state. If an invariant is used to express

all relations between shared variables, then the work required to show noninter-

ference is linear in the number of atomic actions. In particular, it must only be

shown that each atomic action preserves the invariant.

The derivation method is based on this view of processes as invariant maintainers

with respect to synchronization. It consists of four steps:

Step 1. Dejine the problem. Identify the processes and synchronization property.

Introduce variables as needed and write a predicate that specifies the invariant

property that is to be maintained.

Step 2. Outline a solution. Annotate the processes with assignments to the shared

variables and initialize them so that the invariant is true. Group assignments into

atomic actions when they must be executed with mutual exclusion.

4 G. R. Andrew

Step 3. Ensure the invariant. For each atomic assignment action, determine the

precondition that will ensure that the state resulting from executing the action will

satisfy the invariant. Where necessary, guard assignments with delay conditions to

ensure that the postcondition of the assignment satisfies the invariant.

Step 4. Implement the atomic actions. Transform the atomic assignments into code

that employs only sequential statements and the synchronization mechanism to be

employed in the final solution.

The first three steps are essentially the same for various synchronization mechan-

isms. The last step involves using a specific synchronization mechanism to implement

mutual exclusion and condition synchronization so atomic actions are indivisible

and invariant-preserving. How this is done depends on the synchronization method

employed.

The starting point in deriving a solution is coming up with an appropriate invariant.

This can be done in one of two ways: either design a predicate BAD that characterizes

bad states, then use 1BAD as the invariant; or directly specify a predicate GOOD

that characterizes good states and use GOOD as the invariant. Specific examples

are given in the next section.

In a solution outline, the notation

(S)

will be used to indicate that statement list S is to be executed atomically. In the

third derivation step, the notation

(await B + S)

will be used to indicate that the executing process is to be delayed until S can be

executed atomically beginning in a state in which B is true. Here, B guards execution

of S. The guard is chosen so that when the guarded statement terminates, the

invariant will be true.

Dijkstra’s weakest precondition function, wp, is used to compute the guards [8].

The weakest precondition wp(S, Q) of statement S and predicate Q is the weakest

predicate P such that if execution of S is begun in a state satisfying P, execution

is guaranteed to terminate in a state satisfying Q. For an assignment x := e, wp is Q

with e substituted for each free occurrence of x. For a sequence of assignments

“Sl; S2,” wp(“S1; S2,” Q) = wp(S1, wp(S2, 0)); i.e., wp is the composition of the

effects of the two assignments. These are the only applications of wp that are needed

since all atomic actions resulting from Step 2 are sequences of one or more

assignments.

Let K and L be predicates that do not reference variables changed by processes

other than the one that will execute atomic action S. Also, assume that

is a theorem. Finally, assume that assertion I is true before execution of S. If I is

to be invariant, then it must be true after execution of S. This will be the case if S

A method for solving synchronization problems

is replaced by

(await B + S),

where B is a predicate such that

KAIAB =+ wp(S,L~l).

In short, B is chosen so that S is executed only if it will terminate and the resulting

state will satisfy L A I. To avoid unnecessarily delaying a process, B should be the

weakest predicate for which the above formula is true. Often this will simply be the

predicate true, in which case S need not be guarded.

3. Programming with semaphores

This section illustrates in detail how this derivation method can be used to derive

semaphore-based solutions to synchronization problems. It also describes three

important programming techniques that can be used with semaphores: changing

variables, split binary semaphores, and passing the baton.

Semaphores are abstract data types each instance of which is manipulated by two

operations: P and V. These operations have the property that the number of

completed P operations on a specific semaphore never exceeds the number of

completed V operations. A semaphore s is commonly represented by an integer

that records the difference between the number of V and P operations; in this case

s must satisfy the semaphore invariant SEM: s 2 0. A P operation decrements s;

for SEM to be invariant, the decrement must be guarded since

wp(s:=s-1,SEM) = s-120 = s>O.

In contrast, a V operation increments s and need not be guarded since SEM+

wp(s := s + 1, SEM). Using the notation introduced in the previous section, the

semaphore operations are thus:

P(s): (awaits>O+s:=s-l),

V(s): (s:=s+l).

Semaphores as defined above are general semaphores: the number of completed

V operations can be arbitrarily greater than the number of completed P operations.

A binary semaphore is a semaphore for which the number of completed V operations

can be at most one more than the number of completed P operations. Such a

semaphore is called a binary semaphore since its value, when represented as above,

can be only 0 or 1. Thus, a binary semaphore b satisfies a stronger invariant

BSEM: 0~ b s 1. Maintaining this invariant requires guarding the V operation as

well as the P operation. Using wp as above to compute the guards, the operations

on a binary semaphore have the following definitions:

P(b): (awaitb>O+b:=b-I),

V(b): (await b < 1 + b := b + 1).

6 G. R. Andrew

As long as a binary semaphore is used in such a way that a V operation is executed

only when b is 0, V(b) will not cause delay.2

3.1. Critical sections: Changing variables

In the critical section problem, each of N processes P[1: N] repeatedly executes

a critical section of code in which it requires exclusive access to some shared

resource, and a noncritical section, in which it computes using only local objects.

Let in[i] be 1 when P[i] is in its critical section, and 0 otherwise. (It is assumed

that in is not altered within any process’ critical or noncritical section.) The required

property is that at most one process at a time is within its critical section. This can

be specified directly by the invariant

CS: in[l]+. . ++in[N]sl.

Alternatively, the bad state in which more than one process is in its critical section

can be specified by

BAD: in[l]+. . *+in[N]> 1.

Given that all in[i] are 0 or 1, CS = 1BAD so both specifications yield the same

invariant.

The second derivation step is to outline the solution. The processes share array

in[1: N], with each process setting and clearing its element of in before and after

executing its critical section. Initially all elements of in are zero, so the invariant is

initially true. Thus, a solution outline is:

var in[1: N] : integer := ([N] 0) # Invariant C’S

P[i: l..N]::dotrue+{in[i]=O}

(in[i]:= 1)

{in[i] = 1)

Critical Section

(in[i]:=O)

{in[i]=O}

Noncritical Section

od

The outline for each process contains assertions about the element of in manipulated

by that process.3 These assertions follow from the actions of the process, and are

not interfered with. Thus, the solution outline is also a valid proof outline. However,

it is not yet strong enough to conclude that execution of the critical sections is

mutually exclusive. For this, invariant C’S must be included in the proof outline.

’ This is usually assumed and hence the V operation on a binary semaphore is often defined to be

simply (b := b + 1). However, if a V is incorrectly executed when b is 1, then b will no longer satisfy its
definition BSEM.

3 The notation ([N] 0) in the initialization of in denotes a vector of N zeros. The notation P[i: l..N]

denotes an array of N processes; within each process, index i has a unique value between 1 and N.

A method for soloing synchronization problems 7

The third step is to guard assignments to in to ensure that CS is true after each

atomic action. (Since CS is true initially, this will ensure that it is invariant.) Consider

the first assignment, which sets in[i] and thus establishes in[i] = 1. Computing the

weakest precondition as described in Section 2 yields:

wp(in[i]:= 1, in[i] = 1 A CS)

=(l= 1 A in[l]+. . .+in[i-l]+l+in[i+l]+. . .+in[N]Gl).

Since all elements of in are either 0 or 1, and in[i] is zero before the assignment,

this simplifies to

in[l]+* . .+in[N]=O.

This is chosen as the guard for the first atomic action since no weaker predicate

suffices. For the second assignment, which clears in[i], wp is again computed:

wp(in[i]:=O, in[i]=O A CS)

=(O=O A in[l]+. ..+in[i-l]+O+in[i+l]+~~~+in[N]~l).

Since this is implied directly by precondition “in[i] = 1 A CS,” the second atomic

action need not be guarded. Adding the guard to the first atomic action, the solution

becomes:

var in[1: N] : integer := ([N] 0) # Invariant CS

P[i: l..N]::dotrue+{in[i]=O A CS}

(await in[l]+. ..+in[N]=O+in[i]:=l)

{in[i]=l A CS}

Critical Section

(in[i]:=O)

{in[i]=O A cs}

Noncritical Section

od

Since the construction has ensured that CS is invariant, the above is a valid proof

outline. Moreover, the solution is correct since the preconditions for critical sections

in different processes cannot simultaneously be true, and hence the critical sections

execute with mutual exclusion [22].

The remaining derivation step is to use semaphores to implement the atomic

statements. Here this can be done by changing variables so that each atomic statement

becomes a semaphore operation. Let mutex be a semaphore whose value is

mutex=l-(in[l]+*.*+in[N]).

This relation is chosen since it makes mutex nonnegative, as required for a

semaphore. With this change, the atomic statements in the above solution can be

replaced by

and

(await mutex > O+ mutex := mutex - 1; in[i] := 1)

(mutex := mutex + 1; in [i] := 0).

8 G. R. Andrews

But now in is an auxiliary variable: it is used only in assignments to itself. Thus,

the program has the same properties if in is deleted [23]. After deleting in, the

atomic statements are simply semaphore operations, so the final solution is:

var mutex : semaphore := 1

P[i: l..N]:: do true+ P(mutex)

Critical Section

V(mutex)

od

Noncritical Section

This technique of changing variables leads to a compact solution. It can be

employed whenever the following conditions hold:

(1) Semantically different guards reference disjoint sets of variables, and these

variables are referenced only in atomic statements.

(2) Each guard can be put in the form expr > 0 where expr is an integer expression.

(3) Each guarded atomic statement contains one assignment that decrements the

value of the expression in the transformed guard.

(4) Each unguarded atomic statement increments the value of the expression in

one transformed guard.

Given these conditions, one semaphore can be used for each different guard. The

variables that were in the guards then become auxiliary variables and the atomic

statements simplify to semaphore operations.

3.2. Producers and consumers: Split binary semaphores

Although the above solution to the critical section problem is obvious to those

familiar with semaphores, it was derived systematically in a way that made clear

why the solution is correct. This section examines a problem whose solution is

somewhat less obvious, but no harder to derive. The solution illustrates another use

of changing variables. It also illustrates the important concept of a split binary

semaphore [9,14].

In the producers/consumers problem, producers send messages that are received

by consumers. The processes communicate using a single shared buffer, which is

manipulated by two operations: deposit and fetch. Producers insert messages into

the buffer by calling deposit; consumers receive messages by calling fetch. To ensure

that messages are not overwritten before being received and are only received once,

execution of deposit and fetch must alternate, with deposit executed first.

The starting point is to specify the required alternation property. In the critical

section problem, the concern was only whether a process was inside or outside its

critical section; thus one variable per process was sufficient to specify the mutual

exclusion property. Here, however, it is necessary to know how many times deposit

and fetch have been executed, then to bound the difference to ensure alternation.

A method for soloing synchronization problems 9

The way to specify this property-or similar properties such as repeated rendezvous

at a barrier-is to use incrementing counters to indicate when a process reaches

critical execution points. Here the critical points are starting and completing execu-

tion of deposit and fetch. Thus, let inD and ufterD be integers that count the number

of times producers have started and finished executing deposit. Also, let inF and

ufterF be integers that count the number of times consumers have started and

finished executing fetch. Then the required alternation property can be expressed

by the predicate

PC: inD G afterF + 1 A inF G afterD.

In words, this says that deposit can be started at most one more time than fetch has

been completed, and that fetch can be started no more times than deposit has been

completed.4

For this problem, the shared variables are the above counters and a variable buf

that holds one message of some arbitrary type T. Since the main concern is only

how producers and consumers communicate and synchronize, each process simply

executes a loop; producers repeatedly deposit messages and consumers repeatedly

fetch them. Annotating the processes with appropriate assignments to the shared

variables yields the following solution outline.

var buf: T #for some type T

var inD, afterD, inF, afterF : integer := 0, 0, 0,O # Invariant PC

Producer[i: l..M]:: do true+ produce message m

deposit: (inD := inD + 1)

buf := m

(ufterD := ufterD + 1)

od

Consumer[j: l..N]:: dotrue+fetch: (inF:= inF+l)

m := buf

(ufterF := ufterF + 1)

consume message m

od

No assertions are included in the above program since there are no meaningful

ones that would not be interfered with. Also the references to buf are not enclosed

in angle brackets since it will be ensured that deposit and fetch alternate, and hence

that access to buf is atomic.

To extend the above outline to a correct solution, assignments are guarded as

necessary to ensure the invariance of synchronization property PC. Again, wp is

used to compute the guards. The increments of inD and inF need to be guarded,

but the increments of afterD and afterF need not be since they clearly preserve the

4 Again, the property could be specified by characterizing the bad state, then using the negation of

that predicate. Here the bad state is one in which two or more deposits or fetches are executed in a row.

10 G. R. Andrew

invariant.’ Adding guards that ensure the invariance of PC yields the solution:

var buf: T # for some type T

var inD, ufterD, inF, ufterF : integer := 0, 0, 0,O # Invariant PC

Producer[i: 1.. M]: : do true + produce message m

deposit: (await inD< ufterF+ inD:= inD+ 1)

buf := m

(ufterD := ufterD + 1)

od

Consumer[j: l..N]:: do true+fetch: (await inF < ufterD+ inF:= inF+ 1)

m := buf

(ufterF := ufterF + 1)

consume message m

od

The final step is to implement the statements that access the counters. Again the

technique of changing variables can be used since the required conditions are met.

In particular, let empty and furl be semaphores whose values are:

empty = ufterF - inD + 1,

full = ufterD - inF.

With this change, the four counters become auxiliary variables so can be deleted.

Thus, the first statements in deposit and fetch become P operations and the last

become V operations. This yields the final solution.

var buf: T # for some type T

var empty, full : semaphore := 1,0 # Invariant 0 s empty + full S 1

Producer[i: l..M]:: do true+produce message m

deposit: P(empty)

buf := m

V(jilZZ)

od

Consumer[j: l..N]:: do true+fetch: P(fuZZ)

m := buf

Uempty)
consume message m

od

In the solution, empty and furl are both binary semaphores. Moreover, together

they

binary

5 In general, it is never necessary to delay when leaving a critical section of code.

A method for solving synchronization problems 11

semaphores, they form a split binary semaphore if the following assertion is invariant:

SPLIT: 0s b[l]+. . .+b[N]< 1.

The term “split binary semaphore” comes from the fact that the b[i] can be viewed

as being the result of splitting a single binary semaphore b into N binary semaphores

such that SPLIT is invariant.

The importance of split binary semaphores comes from the way in which they

can be used to implement mutual exclusion. Given a split binary semaphore, suppose

that one of the constituent semaphores has initial value one (hence the others are

initially 0). Further suppose that every process uses the semaphores by alternately

executing a P operation then a V operation. Then, all statements between any P

and the next V execute with mutual exclusion. This is because while one process

is between a P and a V, the semaphores are all zero and hence no other process

can complete a P until the first process executes a V. The above solution to the

producer/consumer problem illustrates this.

3.3. Readers and writers: Passing the baton

As a final example, a new solution is derived for the classic readers/writers

problem [7]. The solution introduces a general programming paradigm called

“passing the baton.” This paradigm employs split binary semaphores to provide

exclusion and to control which delayed process is next to proceed.

In the readers/writers problem, two kinds of processes share a database. Readers

examine the database; writers both examine and alter it. To preserve database

consistency, a writer requires exclusive access. However, any number of readers

may execute concurrently. To specify the synchronization property, let nr and nw

be nonnegative integers that respectively record the number of readers and writers

accessing the database. The bad state to be avoided is one in which both nr and

nw are positive, or nw is greater than one. The inverse set of good states is

characterized by the predicate:

RW: (nr=O v ‘nw=O) A nwsl.

The first term says readers and writers cannot access the database at the same time;

the second says there is at most one active writer. Assuming each process executes

a perpetual loop, annotating the processes yields the solution outline:

var nr, nw : integer := 0,O # Invariant R W

Reader[i: l..M]:: dotrue+(nr:= nr+l)

read the database

(nr:= nr-1)
od

Writer[j: l-N]:: dotrue+(nw:= nw+l)

write the database

(nw := nw - 1)

od

12 G.R. Andrews

The assignments to the shared variables now need to be guarded so that RW is

invariant. From

wp(nr:=nr+l,RW) = (nr=-1 v nw=O)

and the fact that nr and nw are nonnegative, nr := nr + 1 must be guarded by nw = 0.

Similarly, nw := nw + 1 must be guarded by (nr = 0 A nw = 0). Neither decrement

need be guarded, however. Informally this is because it is never necessary to delay

a process that is giving up use of a resource. More formally,

wp(nr:= nr-1, RW) = ((nr=l v nw=O) A nwsl).

This is true since (nr > 0 A R W) is true before nr is decremented. The reasoning

for nw := nw - 1 is analogous. Inserting the guards yields the solution:

var nr, nw : integer := 0,O # Invariant R W

Reader[i: l..M]::dotrue+(awaitnw=O+nr:=nr+l)

read the database

(nr:= nr-1)

od

Writer[j: l..N]:: do true+(await nr = Oand nw =O+ nw := nw+ 1)

write the database

(nw := nw - 1)

od

Here, the two guards overlap so the technique of changing variables cannot be

used to implement the atomic statements. This is because no one semaphore could

discriminate between the guards. Thus a different technique is required. The one

introduced here is called passing the baton, for reasons explained below. Of note is

that it is powerful enough that it can always be used.

Using the derivation method, after the third step the solution will contain atomic

statements having either of two forms:

or
Fl: fsi)

F2: (await Bi + Sj).

These statements can be implemented using split binary semaphores as follows.

First, let e be a binary semaphore whose initial value is one. It is used to control

entry into the atomic statements. Second, associate one semaphore cj and one counter

d, with each semantically different guard Bj; these are all initially zero. Semaphore

e, is used to delay processes waiting for condition Bj to become true; d, is a count

of the number of processes delayed (or about to delay) on cj.

A method for solving synchronization problems 13

The entire set of semaphores-e and the cj-are used as follows so they form a

split binary semaphore. Statements of form F1 are replaced by the program fragment

F,: p(e) 111

si {I)
SIGNAL

and statements of form F2 are replaced by the program fragment

Fz: p(e) (11
ifBj+skipOnotB,+dj:=dj+l; V(e);P(c,)fi {IAB,)

sj {I)
SIGNAL

The program fragments are annotated with assertions that are true at critical points,

with I being the synchronization invariant. In both schemes, SIGNAL is the program

fragment

SIGNAL: if B, and d, > O+ {I A B,} d, := d, - 1; V(c,)

0 . . .

OB,andd,>O~{Ir\B,}d,:=d,-1; V(c,)

II else+(I) V(e)

fi

where else is an abbreviation for the negation of the disjunction of the other guards

(i.e., else is true if none of the other guards is true). The first N guards in SIGNAL

check whether there is some process waiting for a condition that is now true. Again,

the program fragments are annotated with assertions that are true at critical points.

With these replacements, the semaphores form a split binary semaphore since at

most one semaphore at a time is one and every execution path starts with a P and

ends with a single V. Hence the statements between any P and V execute with

mutual exclusion. The synchronization invariant I is true before each V operation,

so is true whenever one of the semaphores is one. Moreover, Bj is guaranteed to

be true whenever S, is executed. This is because either the process checked B, and

found it to be true, or the process delayed on cj, which is signaled only when B, is

true. In the latter case, the predicate B, is effectively transferred to the delayed

process. Finally, the transformation does not introduce deadlock since cj is signaled

only if some process is waiting on or about to be waiting on cj.

The method is called passing rhe baton because of the way in which semaphores

are signaled. When a process is executing within a critical region, think of it as

holding a baton that signifies permission to execute. When that process reaches a

SIGNAL fragment, it passes the baton to one other process. If some process is

waiting for a condition that is now true, the baton is passed to one such process,

which in turn executes the critical region and passes the baton to another process.

When no process is waiting for a condition that is true, the baton is passed to the

next process trying to enter the critical region for the first time-i.e., a process

waiting on P(e).

14 G.R. Andrew

This replacement scheme can be applied to the abstract solution to the

readers/writers problem as follows. In that program there are two different guards,

so two condition semaphores and associated counters are needed. Let semaphores

r and w represent the reader delay condition nw = 0 and the writer delay condition

(nr = 0 A nw = 0), respectively. Let dr and dw be the associated counters. Finally,

let e be the entry semaphore. Performing the baton passing replacements described

above, the solution becomes:

var nr, nw : integer := 0,O # Invariant R W

vare,r,w:semaphore:=l,O,O #InvariantOC(e+r+w)sl

var dr, dw : integer := 0,O # Invariant dr 2 0 A dw 2 0

Reader[i: l..M]:: dotrue+P(e)

if nw=O-+skip

Onw>O+dr:=dr+l; V(e);P(r)

fi

nr:= nr+l

SIGNAL,

read the database

p(e)
nr:= nr-1

SIGNA L2

od

Writer[j: l..N]:: do true+ P(e)

ifnr=Oandnw=O+skip

Onr>Oornw>O+dw:=dw+l; V(e);P(w)

fi

nw:= nw+l

SIGNAL,

write the database

p(e)
nw:=nw-1

SIGNA L4

od

Above, SIGNALi is an abbreviation for

SIGNAL,: ifnw=Oanddr>O+dr:=dr-1; V(r)

0 nr=Oandnw=Oanddw>O+dw:=dw-1; V(w)

O(nw>Oordr=O)and(nr>Oornw>Oordw=O)-+V(e)

fi

Note that SIGNAL, ensures that nw is zero when semaphore r is signaled and that

both nr and nw are zero when semaphore w is signaled.

A method for solving synchronization problems 15

Here, and in general, the preconditions of the SIGNAL fragments allow many

of the guards to be simplified or eliminated. In reader processes, nr > 0 A nw = 0 is

true before SIGNAL,, and nw = 0 A dr = 0 is true before SIGNAL,. In writer

processes, nr = 0 A nw > 0 is true before SZGNAL3, and nr = 0 A nw = 0 is true

before SIGNAL,. Using these facts to simplify the signal protocols yields the final

solution:

var nr, nw : integer := 0,O # Invariant R W

vare,r,w:semaphore:=l,O,O #InvariantOG(e+r+w)~l

var dr, dw : integer := 0,O # Invariant dr 2 0 A dw 2 0

Reader[i: l..M]:: dotrue+P(e)

if nw =O+skip

Onw>O+dr:=dr+l; V(e);P(r)

fi

nr:= nr+l

ifdr>O+dr:=dr-1; V(r)

0 dr =O+ V(e)

fi

read the database

P(e)
nr:= nr-1

ifnr=Oanddw>O+dw:=dw-1; V(w)

Onr>Oordw=O+ V(e)

fi

od

Writer[j: l..N]:: dotrue+P(e)

ifnr=Oandnw=O+skip

Onr>Oornw>O-+dw:=dw+l; V(e);P(w)

fi

nw:= nw+l

v(e)
write the database

P(e)
nw:= nw-1

if dr>O+dr:=dr-1; V(r)

lldw>O+dw:=dw-1; v(w)

Cldr=Oanddw=O+V(e)

fi

od

Note that the last if statement in writer processes is nondeterministic: if there are

both delayed readers and delayed writers, either could be signaled.

16 G.R. Andrews

Like the classic solution to this problem [7], the above solution gives readers

preference over writers. Unlike the classic solution, however, the above solution

can readily be modified to schedule processes in other ways. For example, to give

writers preference it is necessary to ensure (1) that new readers are delayed if a

writer is waiting, and (2) that a delayed reader is awakened only if no writers are

waiting. The first requirement is met by changing the first if statement in reader

processes to

ifnw=Oanddw=O+skip

Unw>Oordw>O+dr:=dr+l; V(e);P(r)

fi

The second requirement is met by strengthening the first guard in the last if statement

in writer processes to dr > 0 and dw = 0. This eliminates the nondeterminism, which

is always safe to do. Note that these changes in no way alter the structure of the

solution.

It is also possible to ensure fair access to the database, assuming semaphore

operations are themselves fair. For example, readers and writers can be forced to

alternate turns when both are waiting: When a writer finishes, all waiting readers

get a turn; when they finish, one waiting writer gets a turn, etc. This alternation can

be implemented by adding a Boolean variable writer-lust that is set true when a

writer starts writing, and is cleared when a reader starts reading. Also change the

last if statement in writer processes to

if dr > 0 and (dw = 0 or writeylast) + dr := dr - 1; V(r)

0 dw > 0 and (dr = 0 or not writer_last) + dw := dw - 1; V(W)

Odr=Oanddw=O+V(e)

fi

Again the structure of the solution is unchanged.

This technique of passing the baton can also be used to provide finer-grained

control over the order in which processes use resources. In the extreme, one

semaphore can be associated with each process and thus can be used to control

exactly which delayed process is awakened. This might be used, for example, by a

memory allocator, in which case a process would before delaying record the amount

of memory it required.

In fact, the passing the baton paradigm can be used to solve almost any synchroniz-

ation problem. This is because (1) most safety properties can be expressed as an

invariant, (2) an invariant can be ensured by guarding atomic actions, (3) any

collection of guarded atomic actions can be implemented using the passing the

baton transformation, and (4) the exact order delayed processes are serviced can

be controlled by associating one condition semaphore with each process. The only

thing that cannot be controlled is the order in which processes delayed on the entry

A method for solving synchronization problems 17

semaphore are serviced. This depends on the underlying implementation of

semaphores.

4. Discussion

The examples have illustrated how it is possible to derive solutions to synchroniz-

ation problems in a systematic way. The key to the approach is viewing processes

as invariant maintainers and the critical first step is to come up with an invariant.

The general idea is to specify either the bad state to avoid or the good state to

ensure. The examples illustrated three specific techniques: using variables to record

when a process is in a critical section, to record passage through key execution

points, and to count the number of processes in a certain state. These same techniques

can be used for numerous additional problems such as the dining philosophers,

barrier synchronization, parallel garbage collection, disk scheduling, and the sleeping

barber problem. These examples and several others are described in [l].

Given an invariant, the second and third derivation steps are essentially

mechanical: make collections of assignments atomic, then guard atomic assignments

to ensure the invariant, with wp being used to compute the necessary guard. The

result is an abstract solution that uses atomic statements and await statements.

The final step is to implement the abstract solution. This paper has shown how

to do so using semaphores. In particular, two different techniques were introduced:

changing variables and passing the baton, which employs split binary semaphores.

When the changing variables technique can be employed, it results in a compact

solution. In any event, however, the passing the baton technique can always be

employed. Another virtue of passing the baton is that different scheduling policies

can be realized by making slight modifications to a solution. The readers/writers

solution illustrated this.

Other synchronization mechanisms can also be used to implement the abstract

solution.6 Busy waiting is a form of synchronization in which a process repeatedly

checks a synchronization condition until it becomes true. Using busy waiting, (S)

can be implemented as

CSenter; S; CSexit

where CSenter and CSexit are entry and exit protocols for some solution to the

critical section problem (e.g., Peterson’s algorithm [24], the bakery algorithm [17],

or test-and-set instructions). Similarly, (await B + S) can be implemented as

CSenter; do not B + CSexit; CSenter od; S; CSexit

’ How this is done is described in detail in [l]

18 G.R. Andrews

where CSenter and CSexit are the same critical section protocols as above. (To

reduce memory contention on a multiprocessor, a random delay can be inserted

between the exit and re-enter protocols within the do loop.)

Conditional critical regions (CCRs) are another notation for specifying syn-

chronization [4, 131. CCRs employ resources and region statements, which are quite

similar to await statements. A resource is a collection of shared variables that are

used together. A region statement has the form

region r when B + S end

where r is a resource name, B is a Boolean expression, and S is a statement list.

Evaluation of B and execution of S are an atomic action, as with an await statement.

Thus, an abstract solution resulting from the derivation method can be implemented

using CCRs by grouping shared variables into a resource and using region statements

to implement atomic actions. The synchronization invariant associated with the

resource is now what is called a resource invariant [22].

It is also straightforward to use monitors [5, 141. A monitor consists of a collection

of permanent variables and procedures that implement operations on these variables.

The permanent variables are analogous to a CCR resource, and the procedures

implement the different region statements. Procedures in a monitor automatically

execute with mutual exclusion. Condition synchronization is provided by means of

condition variables, and wait and signal statements. Condition variables are very

similar to semaphores: wait, like P, delays a process and signal, like V, awakens a

process. One difference is that execution of signal immediately transfers control to

the awakened process.’ The second difference is that signal has no effect if no

process is waiting on the signaled condition variable whereas a V operation on a

semaphore always increments the semaphore.

Because of this similarity, the passing the baton method can be used almost

directly to implement await statements. In particular, each atomic action in an

abstract solution becomes a monitor procedure. The body of the procedure for an

action (Si) becomes

Si; SIGNAL

and the body of the procedure for an action (await B, -+ S,) becomes

if B, -+ skip 0 not B, + wait(c,) fi; S,; SIGNAL

where cj is a condition variable associated with Bj. In both cases SIGNAL is the

program fragment

if B, and not empty(cl) + signal(cl)

’ Other signaling semantics have also been proposed [3, 161. They affect the way in which await
statements are implemented, as described in [11.

A method for solving synchronization problems 19

cl . . .

0 B, and not empty(cN) + signal(cN)

0 else + skip

fi

where empty(c) is an operation that returns true if there is no process waiting on

condition variable c. The main difference between these transformations and those

used with semaphores is the absence of an analog of the entry semaphore, which

is not needed since exclusion is implicitly provided.

As with semaphores, the monitor signaling protocol can often be simplified by

taking its precondition into account and by taking advantage of the fact that executing

signal has no effect if a condition queue is empty. Also, a priority wait statement

can sometimes be used to order delayed processes; this decreases the number of

condition variables required to solve many scheduling problems.8 The main point,

though, is that the basic approach when using monitors is the same as with

semaphores. The advantages of monitors relative to semaphores are that shared

variables are encapsulated and exclusion is implicit.

The above synchronization mechanisms are all based on shared variables. Another

class of synchronization constructs is based on message passing. In this case,

processes share only channels along which messages are sent and received.

Any concurrent program that employs shared variables can be converted to a

distributed program that uses message passing. For example, a monitor-based

program can be converted by changing each monitor into a server process that

repeatedly services requests from the other processes, which are called its clients

[20]. Procedure call and return are simulated using message passing primitives.

Permanent monitor variables become variables local to the server process. The server

executes a perpetual loop; the loop invariant is what was the monitor invariant.

Within the loop, the server repeatedly receives a request to perform an operation,

and either executes it or defers it until later. A request is deferred exactly when a

monitor procedure would have waited on a condition variable; it is serviced when

doing so will result in a state in which the loop invariant is true. The exact way in

which the clients and server are programmed depends on the specific kind of message

passing that is employed (the possibilities are surveyed in [3]).

Rather than converting a monitor-based program, a client/server program can be

derived directly using a variation on the basic derivation method. The steps are the

same but are realized somewhat differently. First, for each abstract resource, define

the operations its server will provide and specify the invariant the server will

maintain. Then outline the server process, which executes a perpetual loop consisting

of operation fragments of the form

a Multiple operations can also be combined into a single procedure, which may then have internal

delay points, preceded as needed by signals to awaken other processes.

20 G. R. Andrew

there is one such fragment for each operation the server implements. Third, guard

each operation fragment to ensure that the loop invariant will be true after executing

S,. Finally, use some collection of message passing primitives to implement

client/server communication and the operation fragments.

The biggest difference between using message passing as opposed to shared

variables is the way in which the implementation step is realized. In fact, there are

a number of possibilities since there are numerous different message passing primi-

tives. At one extreme, the SR language facilitates a straightforward implementation

[2] since operations can be serviced by a single input statement, which can contain

guards that reference operation parameters. At the other extreme, in a language

such as PLITS [121, the server repeatedly waits for a message, then executes a case

statement based on the kind of request, then either honors or saves the request,

depending on its local state. The implementation step is realized by a combination

of these two extremes in other languages such as Ada [25] and CSP [15]. For

example, the server structure in Ada is similar to that in SR when the guards do

not depend on operation parameters; otherwise a structure like that of the PLITS

solution must be used (although families of entries can sometimes be employed).

This derivation method can be used to design shared-variable solutions to syn-

chronization problems. It can also be used directly to design servers in distributed

programs. The main concepts of the method-invariants and guarding actions to

ensure them-are also applicable to more general distributed programs. For example,

[18] shows how a shared variable program for maintaining routing tables in a

network can be converted to a distributed program, and then shows that the program

maintains a global invariant that implies correctness. A similar approach is applied

in [111 to develop two algorithms for computing the topology of a network (see

also [21]).

Invariants and guarded actions also play a key role in the Unity notation for

parallel programming [6]. Unity is an abstract, architecture-independent notation

that was designed to provide a foundation for parallel program design. A Unity

program contains four sections: variable declarations, invariant equations that

always hold, initialization equations, and a set of assignment statements. Assign-

ments are guarded when necessary to ensure that the invariant equations are always

true. A distinctive attribute of Unity is that the order of assignments is immaterial;

at any point in time, any one of them can be selected for execution. In contrast,

the approach presented here applies to traditional, imperative programs with explicit

control flow and synchronization.

Acknowledgement

Fred Schneider suggested the approach described in this paper and inspired the

search for general techniques for implementing atomic actions. He, Ron Olsson,

and Rick Schlichting provided numerous useful comments on an earlier version of

A method for solving synchronization problems 21

this paper. The three referees also provided suggestions that helped clarify the

presentation.

References

[l] G.R. Andrews, Concurrent Programming: Principles and Practice (Benjamin/Cummings, Menlo

Park, CA, to appear).

[2] G.R. Andrews, R.A. Olsson, et al., An overview of the SR language and implementation, ACM

Trans. Programming Languages Syst. 10 (1) (1988) 51-86.

[3] G.R. Andrews and F.B. Schneider, Concepts and notations for concurrent programming, ACM

Comput. Surveys 15 (1) (1983) 3-43.

[4] P. Brinch Hansen, Structured multiprogramming, Comm. ACM 15 (1972) 574-578.

[5] P. Brinch Hansen, Operating System Principles (Prentice-Hall, Englewood Cliffs, NJ, 1973).

[6] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation (Addison-Wesley, Reading,

MA, 1988).
[7] P.J. Courtois, F. Heymans and D.L. Parnas, Concurrent control with readers and writers, Comm.

ACM I4 (1971) 667-668.

[8] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[9] E.W. Dijkstra, A tutorial on the split binary semaphore, EWD703, Nuenen, Netherlands (1979).

[lo] E.W. Dijkstra, The superfluity of the general semaphore, EWD734, Nuenen, Netherlands (1980).

[ll] I.J.P. Elshoff and G.R. Andrews, The development of two distributed algorithms for network

topology, TR 88.13, Department of Computer Science, The University of Arizona, Tucson, AZ

(1988).

[121 J.A. Feldman, High level programming for distributed computing, Comm. ACM 22 (1979) 353-368.
[13] C.A.R. Hoare, Towards a theory of parallel programming, in: Operating Systems Techniques

(Academic Press, New York, 1972).

[141 C.A.R. Hoare, Monitors: An operating system structuring concept, Comm. ACM 17 (1974) 549-557.

[151 C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.

[16] J.H. Howard, Signaling in monitors, in: Proceedings 2nd International Conference on Software

Engineering, San Francisco, CA (1976) 47-52.

[17] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Comm. ACM 17 (1974)

453-455.

[181 L. Lamport, An assertional correctness proof of a distributed algorithm, Sci. Comput. Programming

2 (1982) 175-206.

[19] L. Lamport and F.B. Schneider, The “Hoare logic” of CSP, and all that, ACM Trans. Programming

Languages Syst. 6 (1984) 281-296.

[20] H.C. Lauer and R.M. Needham, On the duality of operating system structures, in: Proceedings 2nd

Internarional Symposium on Operating Systems, Paris (1978); Reprinted: Operating Syst Rev. 13 (2)

(1979) 3-19.

[21] R. McCurley and F.B. Schneider, Derivation of a distributed algorithm for finding paths in directed

networks, Sci. Comput. Programming 6 (1986) l-9.

[22] S.S. Owicki, Axiomatic proof techniques for parallel programs, TR 75-251, Ph.D. Dissertation,
Department of Computer Science, Cornell University, Ithaca, NJ (1975).

[23] S.S. Owicki and D. Cries, An axiomatic proof technique for parallel programs, Acra Inform. 6
(1976) 319-340.

[24] G.L. Peterson, Myths about the mutual exclusion problem, Inform. Process. Lett. 12 (1981) 115-l 16.
[25] Reference manual for the Ada programming language, US Department of Defense (1980).

