If you want to travel around the world and be invited to speak at
a lot of different places, just write a Unix operating system.

Linus Torvalds

Phase 3 - Level 4: The Support Level

Level 4, the Support Level, builds on the Nucleus in two key ways to create
an environment for the execution of user-processes (U-proc’s):

e Support for address translation/virtual memory. Each U-proc will ex-
ecute in its own identically structured logical address space (kuseg),
with a unique Address space identifier (i.e. process ID), ASID. [Section
6.2-pops|

e Support for character-oriented I/O devices: terminals and printers.
Each U-proc is assigned its own printer and terminal.

Specifically, the Support Level provides the exception handlers that the
Nucleus “passes” handling “up” to; assuming the process was provided a
non-NULL value for its Support Structure. [Section 3.7]

There will be one Level 4/Phase 3 exception handler for:

e TLB Management (TLB) exceptions: The Support Level page fault
handler, i.e. the Pager. [Section 4.4]

e non-TLB exceptions. This hander is for all SYSCALL (SYSCALL)
exceptions numbered 1 and above (positive numbers), and all Program
Trap exceptions. [Section 4.6]

45

46 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

These two exception handlers will run in kernel-mode with interrupts en-
abled, while the U-proc’s will run in user-mode, with interrupts enabled.
Hence each U-proc leads a schizophrenic life; mostly executing in user-mode,
but sometimes, after the handling of an exception is “passed” back up to
it; executing in kernel-mode. While the Nucleus exception and interrupt
handlers are system-wide resources that all processes share (in serial fashion
with interrupts disabled), the Support Level exception handlers are more like
Support Level provided libraries that becomes part of each U-proc.!

Finally, instead of using the Nucleus’s test program (test) place holder
TLB-Refill event handler (uTLB_RefillHandler), the Support Level will im-
plement its own TLB-Refill event handler. [Section 4.3]

Hence, the bulk of this phase is the implementation of these three excep-
tion event handlers.

4.1 Address Translation: The OS Perspec-
tive

Before getting into how Pandos supports address translation, one must fully
understand how the uMPS3 hardware supports address translation. [Chapter
6-pops| & [Figure 6.9-pops]

Essentially, every logical address for which translation is called for (any
address above the TLB Floor Address) triggers a hardware search of the TLB
seeking a matching TLB entry. If no matching entry is found a TLB-Refill
event is triggered. Assuming the Nucleus correctly initialized the Processor 0
Pass Up Vector with the address of the TLB-Refill event handler [Section 3.1],
control should continue with the Support Level’s TLB-Refill event handler.
(e.g. uTLB_RefillHandler) This function will locate the correct Page Table
entry in some Support Level data structure (i.e. a U-proc’s Page Table),
write it into the TLB (TLBWR or TLBWTI [Section 6.4-pops| & [Section
4.5.2]), and return control (LDST) to the Current Process to restart the
address translation process.

Once a matching TLB entry is found and it is marked wvalid, the pMPS3
hardware constructs the corresponding physical address. If the matching

!Technically, this is not true for the TLB-Refill event handler (e.g.
uTLB_RefillHandler) which will behave like a Nucleus exception handler - a system-wide
resource that all processes will share in serial fashion. However, since it is a part of the
address translation process, it is included as part of Level 4/Phase 3.

4.1. ADDRESS TRANSLATION: THE OS PERSPECTIVE 47

TLB entry is marked invalid, or the access represents an attempt to modify

memory and the matching TLB entry’s D bit is off, a TLB exception is

raised: TLB-Invalid or TLB-Modification. The Support Level TLB exception

handler will handle TLB-Invalid exceptions, i.e. page faults. [Section 4.4]

Since all Page Table entries (and therefore all TLB entries) should be marked

as dirty (the D bit on), TLB-Modification exceptions should not occur.
This implies the following Support Level data structures:

e One Page Table per U-proc. A Pandos Page Table will be an array of 32
Page Table entries. Each Page Table entry is a doubleword consisting
of an EntryHi and an EntryLo portion. [Section 6.3.2-pops] This
array should be added to the Support Structure (support_t) that is
pointed to by a U-proc’s pcb. [Section 3.7]

Technical Point: TLB entries and Page Table entries are identical in
structure: a doubleword consisting of an EntryHi and an EntryLo
portion. Which term is used will be dependent on context.

e The Swap Pool; a set of RAM frames reserved for virtual memory.
Logical pages will occupy these frames when present. The size of the
Swap Pool should be set to two times UPROCMAX, where UPROCMAX is
defined as the specific degree of multiprogramming to be supported:
[1...8]. The Swap Pool is not so much a Support Level data structure,
but a set of RAM frames reserved to support paging.

e The Swap Pool data structure/table. The Support Level will maintain
a table, one entry per Swap Pool frame, recording information about
the logical page occupying it. At a minimum, each entry should record
the ASID and logical page number of the occupying page.

e The Swap Pool semaphore. A mutual exclusion semaphore (hence ini-
tialized to 1) that controls access to the Swap Pool data structure.

e Backing store; secondary storage that contains each U-proc’s complete
logical image — which for Pandos is limited to 32 pages in size. As-
sociated with each U-proc is a flash device which will be configured
(preloaded) to contain that U-proc’s logical image. While slightly un-
realistic, this basic version of the Support Level will use each U-proc’s
flash device as its backing store device.

48 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.2 A U-proc’s Logical Address Space and
Backing Store

Each U-proc ezecutes in the kuseg address space [Section 6.2-pops], in user-
mode, with interrupts enabled, and a unique ASID value.

ASID 0 is reserved for kernel daemons, so the (up to) eight U-proc’s
should be assigned ASID values from [1..8].

The first page, for each U-proc is 0x8000.0000. The second page is
0x8000.1000, and so on. A Pandos U-proc’s .text and .data regions, to-
gether can be no larger than 31 pages. (0x8001.E000).

The stack page is limited to one page and is set to the halfway point in
kuseg. The SP will start at 0xC000.0000 and grow downward. Pandos, does
not support dynamic variables, hence there is no heap space.

0xFFFF.FFFF

.............................. 0xC000.0000
[.......stackarea | 0xBFFF.F000

0x8001.E000
text & data area
0x8000.0000

Address Error

0x0000.0000

Figure 4.1: Layout of a U-proc inside kuseg

When a process is initiated, an operating system would typically read the
contents of the executable file (e.g. .aout file) and use its contents to:

e Set up the new process’s Page Table; which would reflect that none of
the process’s pages are present.

e Set up the new process’s backing store on a secondary storage device.

4.2. A U-PROC’S LOGICAL ADDRESS SPACE AND BACKING STOREFA9

4.2.1 A U-proc’s Page Table

While the pMPS3 hardware defines the structure of a TLB entry, it does not
define the structure of a Page Table. A uMPS3-compatible operating system
is free to define a Page Table however it wishes; the hardware never interacts
directly with Page Tables, just with the TLB.

When a TLB-Refill event occurs, the operating system builds an appro-
priate TLB entry from the data in a Page Table and writes the entry into
the TLB. To simply this process, Pandos defines a Page Table entry to be
identical to a TLB entry. Hence, in Pandos, a Page Table is an array of TLB
entries.

Each U-proc’s Page Table will be an array of 32 TLB entries. (Or equiv-
alently, an array of 32 Page Table entries.) The first 31 entries are for the
.text and .data pages of the logical address space. (Logical page number 0
through page number 30, starting from 0x8000.0000.) The final entry is for
the U-proc’s stack page. (Logical page number 0x3FFF.F000, starting from
0x8000.0000.)

EntryHI EntryLo
VPN ASID PEN NDVG
0 0x80000 : LI L0:
1 0x80001 : i ;10
30| Ox8001E OB
31 OxBFFFF _: 100

Figure 4.2: Layout of U-proc i’s Page Table

To initialize a Page Table one needs to set the VPN, ASID, V, and D
bit fields for each Page Table entry. [Section 6.3.2-pops|

e The VPN field will be set to [0x80000..0x8001E] for the first 31 entries.
The VPN for the stack page (Page Table entry 31) should be set to
0xBFFFF - the starting address whose top end is 0xC000.0000. (The
value that SP is initialized to.)

50 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

e The ASID field, for any given Page Table, will all be set to the U-proc’s
unique ID: an integer from [1..8]

e The D bit field will be set to 1 (on) - each page is write-enabled.

e The G bit field will be set to 1 (off) - these pages are private to the
specific ASID.

e The V bit field will be set to 0 (off) - the entry is NOT valid. i.e. A
copy of this page is not also currently residing in RAM.

4.2.2 A U-proc’s Backing Store

Since there is no file system (yet) containing files (executable or otherwise,
e.g. .aout), which the operating system would read to set up both the Page
Table and the backing store, the supplied utility umps3-mkdev [Section 11.2-
pops] can be configured to preload a flash device with the contents of a .aout
file in a manner that makes it suitable to be used as that process’s backing
store.

Hence, user processes are not represented by a file to be processed (i.e.
initialize a Page Table and set up the backing store), but via individual sec-
ondary storage devices (flash device) each preconfigured/already initialized
with that process’s logical image/backing store data.

Specifically, each U-proc will be associated with a unique flash device,
preloaded with that process’s logical image, which the Support Level will
then use as the process’s backing store device.

4.3 The TLB-Refill event handler

When a logical address translation’s search of the of the TLB for a matching
entry fails, a TLB-Refill event is triggered. Assuming the Nucleus correctly
initialized the Processor 0 Pass Up Vector with the address of the TLB-
Refill event handler [Section 3.1}, control should continue with the Pandos
TLB-Refill event handler. (e.g. uTLB_RefillHandler)

A TLB-Refill event is essentially a cache-miss event since the TLB is a
cache of the most recently executed processes’ Page Table entries. It is the
job of the TLB-Refill event handler to insert into the TLB the missing Page
Table entry and restart the instruction.

4.3. THE TLB-REFILL EVENT HANDLER o1

The Level 3/Phase 2 Nucleus code implemented a skeleton TLB-Refill
event handler (e.g. uTLB_RefillHandler). [Section 3.3] The supplied skele-
ton code should, as part of this phase, be replaced (inplace) with the code
for an actual TLB-Refill event handler.

Technical Point: The TLB-Refill event handler is actually a Level 3/Phase
2 handler in that it executes in kernel-mode, with interrupts disabled, and
uses the first frame of RAM as its stack page; the Nucleus stack page [Sec-
tion 3.1]. As such, like the other Level 3/Phase2 handlers (and unlike all the
other Level 4/Phase 3 exception handlers) it is allowed access to the Level
3/Phase 2 global structures. (e.g. Current Process) However, since it is a key
component in Pandos’s implementation of virtual memory, its implementa-
tion is part of Level 4/Phase 3, and therefore also has access to a process’s
Support Structure (e.g. the Page Table).
This function will:

e Locate the correct Page Table entry in the Current Process’s Page
Table; a component of p_supportStruct [Section 3.7]

e Write the entry into the TLB using the TLBWR instruction. [Section
6.4-pops]).

e Return control (LDST) to the Current Process to restart the address
translation process.

To accomplish this, a TLB-Refill event handler must:

1. Determine the page number (denoted as p) of the missing TLB entry
by inspecting EntryHi in the saved exception state located at the start
of the BIOS Data Page. [Section 3.4]

2. Get the Page Table entry for page number p for the Current Process.
This will be located in the Current Process’s Page Table, which is part
of its Support Structure.

3. Write this Page Table entry into the TLB. This is a three-set process:

(a) setENTRYHI
(b) setENTRYLO
(c) TLBWR

52 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4. Return control to the Current Process to retry the instruction that
caused the TLB-Refill event: LDST on the saved exception state lo-
cated at the start of the BIOS Data Page.

4.4 Paging in Pandos

4.4.1 The Swap Pool

A Swap Pool is a set of RAM frames set aside to support virtual memory. To
ensure the proper exercise of Pandos’s paging functionality, the size of the
Swap Pool should be set to two times UPROCMAX, where UPROCMAX is defined
as the specific degree of multiprogramming to be supported/implemented:
[1...8]. (i.e. The number of U-procs to be concurrently executed.)

The Swap Pool can be placed anywhere in unused RAM: from the end
of the operating system code, to the start of the last frame of RAM (which
Level 3/Phase 2 allocated as the stack page for the initial process - test).

The recommended location in Pandos is to place the Swap Pool after the
end of the operating system code. Though the size of one’s operating system
code is unknown,? simply overestimate its size. For example, assume one’s
Pandos code base (plus Nucleus stack) occupies no more than 32 frames.
Hence, the Swap Pool’s starting address is: 0x2002.0000 (0x2000.0000 + (32
* PAGESIZE))

Important Point: Using the uMPS3 Machine Configuration Panel make
sure that there is sufficient “installed” RAM for the OS code, the Swap Pool
and stack page for test. [Section 12.2.1-pops]

The Support Level must maintain a table, one entry per frame in the Swap
Pool, recording information about the logical page occupying it. This table
should be composed of three columns/fields:

1. The ASID of the U-proc whose page is occupying the frame.

2. The logical page number (VPN) of the occupying page.

2The operating system object format, .core is a variant of the .aout format. The header
information in both a .core and .aout file contains information describing the size of the
code (.text and .data). [Section 10.3.1-pops]

4.4. PAGING IN PANDOS 93

OxFFFF.FFFF

Bus Error
RAMTOP

Unused
Installed RAM
(8-512 4Kb frames) |
swap pool
............................. 0x2002.0000
0S code
............................. 0x2000.1000
kernel stack 0x2000.0000

BIOS Region

0x0000.0000

Figure 4.3: Memory Layout for the Swap Pool

3. A pointer to the matching Page Table entry in the Page Table belonging
to the owner process. (i.e. ASID)

Technical Point: Since all valid ASID values are positive numbers, one
can indicate that a frame is unoccupied with an entry of -1 in that frame’s
ASID entry in the Swap Pool table.

The size of the table must match the size of the Swap Pool: one entry
per frame in the Swap Pool.

Finally, the Swap Pool table is a shared data structure that must be ac-
cessed or updated in a mutually exclusive manner. Hence, the Support Level
will also define a mutual exclusion semaphore (the Swap Pool semaphore)
to control access to the Swap Pool table. To access the Swap Pool table, a
process must first perform a NSYS3 (P) operation on this semaphore. When
access to the Swap Pool table is concluded, a process will then perform a
NSYS4 (V) operation on this semaphore. Since this semaphore is used for
mutual exclusion, it should be initialized to one.

o4 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.4.2 The Pager

While TLB-Refill events will be handled by the Support Level’s TLB-Refill

event handler (e.g. uTLB RefillHandler), page faults are passed up by the

Nucleus to the Support Level’s TLB exception handler — the Pager.
pMPS3 defines three different TLB exceptions [Chapter 3-pops]:

e Page fault on a load operation: TLB-Invalid exception — TLBL
e Page fault on a store operation: TLB-Invalid exception — TLBS

e An attempted write to a read-only page: TLB-Modification exception
— Mod

In Pandos, Page Table entries are to be marked as read-writable, therefore
TLB-Modification exceptions should not occur. If they do, they should be
treated as a program trap. [Section 4.8]

To handle a page fault, a Pandos TLB exception handler should perform
the following steps:

1. Obtain the pointer to the Current Process’s Support Structure: NSY'SS8.

Important Point: Level 4/Phase 3 exception handlers are limited in
their interaction with the Nucleus and its data structures to the func-
tionality of SYSCALLs identified by negative numbers.

2. Determine the cause of the TLB exception. The saved exception state
responsible for this TLB exception should be found in the Current Pro-
cess’s Support Structure for TLB exceptions. (sup_exceptState[0]’s
Cause register)

3. If the Cause is a TLB-Modification exception, treat this exception as
a program trap [Section 4.8|, otherwise continue.

4. Gain mutual exclusion over the Swap Pool table. (NSYS3 — P operation
on the Swap Pool semaphore)

5. Determine the missing page number (denoted as p): found in the saved
exception state’s EntryHi.

6. Pick a frame, i, from the Swap Pool. Which frame is selected is deter-
mined by the Pandos page replacement algorithm. [Section 4.5.4]

4.4. PAGING IN PANDOS 95

7. Determine if frame ¢ is occupied; examine entry ¢ in the Swap Pool

8.

10.

11.

12.

table.

If frame ¢ is currently occupied, assume it is occupied by logical page
number k& belonging to process x (ASID) and that it is “dirty” (i.e.
been modified):

(a) Update process z’s Page Table: mark Page Table entry k as not
valid. This entry is easily accessible, since the Swap Pool table’s
entry ¢ contains a pointer to this Page Table entry.

(b) Update the TLB, if needed. The TLB is a cache of the most
recently executed process’s Page Table entries. If process x’s page
k’s Page Table entry is currently cached in the TLB it is clearly
out of date; it was just updated in the previous step.

Important Point: This step and the previous step must be ac-
complished atomically. [Section 4.5.3]

(c) Update process z’s backing store. Write the contents of frame ¢
to the correct location on process x’s backing store/flash device.
[Section 4.5.1]

Treat any error status from the write operation as a program trap.
[Section 4.8]

. Read the contents of the Current Process’s backing store/flash device

logical page p into frame i. [Section 4.5.1]
Treat any error status from the read operation as a program trap.
[Section 4.8]

Update the Swap Pool table’s entry i to reflect frame i’s new contents:
page p belonging to the Current Process’s ASID, and a pointer to the
Current Process’s Page Table entry for page p.

Update the Current Process’s Page Table entry for page p to indicate
it is now present (V bit) and occupying frame i (PFN field).

Update the TLB. The cached entry in the TLB for the Current Pro-
cess’s page p is clearly out of date; it was just updated in the previous

56 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

step.

Important Point: This step and the previous step must be accom-
plished atomically. [Section 4.5.3]

13. Release mutual exclusion over the Swap Pool table. (NSYS4 — V oper-
ation on the Swap Pool semaphore)

14. Return control to the Current Process to retry the instruction that
caused the page fault: LDST on the saved exception state.

4.5 Miscellaneous Details Related to Paging

4.5.1 Reading and Writing from/to a Flash Device

uMPS3 flash devices are highly abstracted versions of real flash devices. It
is convenient to think of them as isomorphic to seek-less, 1-dimensional disk
devices. Flash device blocks are numbered sequentially [0. MAXBLOCK-
1]. To read/write a flash device one performs the following two steps in order
[Section 5.4-pops]:

1. Write the flash device’s DATAQ field with the appropriate starting
physical address of the 4k block to be read (or written); the particular
frame’s starting address.

2. Use the NSYS5 system call to write the flash device’s COMMAND
field with the device block number (high order three bytes) and the
command to read (or write) in the lower order byte.

Each U-proc is associated with its own flash device, already initialized
with its backing store data. [Section 4.2.2] The flash device’s blocks [0..30]
will used store the U-proc’s .text, and .data, while block 31 will hold the
U-proc’s stack page.

4.5.2 Updating the TLB

The TLB is a cache of Page Table entries across multiple U-proc’s. Hence,
whenever a Page Table entry is updated by the Pager, if that entry is also
present /cached in the TLB, there is a cache consistency problem. There

4.5. MISCELLANEOUS DETAILS RELATED TO PAGING o7

are two approaches one can employ to guarantee cache consistency. [Section
6.4-pops|
The two approaches are:

e Probe the TLB (TLBP) to see if the newly updated TLB entry is
indeed cached in the TLB. If so (Index.P is 0), rewrite (update) that
entry (TLBWI) to match the entry in the Page Table.

e Erase ALL the entries in the TLB (TLBCLR).

While the first approach is the recommended approach for Pandos. One
should initially implement the second approach and then refactor to em-
ploy the first approach after all other aspects of the Support Level are com-
pleted /debugged.

4.5.3 Updating a Page Table and the TLB Atomically

The order of operations for the Pager are important. Specifically:

e When refreshing the backing store, one must first update the Page
Table, and possibly the TLB, before performing the write operation.

e When reading in from the backing store, one must first perform the
read operation before updating the Page Table and TLB.

Thought Challenge: Why must these operations be done in the prescribed
order?

Similarly, the updating of a Page Table entry and its cached counter-
part in the TLB, must be done atomically. This is accomplished in pMPS3
by disabling interrupts before the update statements, and then reenabling
them immediately afterwards. Interrupts are disabled and enabled via the
STATUS register (setSTATUS). [Section 7.1-pops]

Thought Challenge: Why must the Page Table and TLB be updated atom-
ically?

58 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.5.4 The Pandos Page Replacement Algorithm

When a page fault occurs, the page replacement algorithm picks one of the
frames from the Swap Pool. The recommended Pandos page replacement
algorithm is First in First out.

Though inefficient, this “round robin” algorithm is easily implemented
via a static variable. Whenever a frame is needed to support a page fault,
simply increment this variable mod the size of the Swap Pool.

4.6 The Support Level General Exception Han-
dler

The Support Level general exception handler will process all passed up non-
TLB exceptions:

e All SYSCALL (SYSCALL) exceptions numbered 1 and above (posi-
tive number).

e All Program Trap exceptions; all exception causes exclusive of those for
SYSCALL exceptions and those related to TLB exceptions. [Section
3.7.2]

Assuming that the handling of the exception is to be passed up (non-
NULL Support Structure pointer) and the appropriate sup_exceptContext
fields of the Support Structure were correctly initialized, execution continues
with the Support Level’s general exception handler. The processor state at
the time of the exception will be in the Support Structure’s corresponding
sup_exceptState field. [Section 3.7]

After examining the sup_exceptState’s Cause register, the Support
Level general exception hander will pass control to either the Support Level’s
SYSCALL exception handler [Section 4.7], or the Support Level’s Program
Trap exception handler. [Section 4.§]

4.7 The SYSCALL Exception Handler

The nucleus directly handles all NSYS SYSCALL exceptions (those having
negative identifiers). For all other SYSCALL exceptions the nucleus either
treats the exception as a NSYS2 (terminate) or “passes up” the handling of

4.7. THE SYSCALL EXCEPTION HANDLER 59

the exception if the offending process was provided a non-NULL value for its
Support Structure pointer when it was created. [Section 3.7]

Assuming that the handling of the exception is to be passed up (non-
NULL Support Structure pointer) and the appropriate sup_exceptContext
fields of the Support Structure were correctly initialized, execution contin-
ues with the Support Level’s general exception handler, which should then
pass control to the Support Level’s SYSCALL exception handler. The pro-
cessor state at the time of the exception will be in the Support Structure’s
corresponding sup_exceptState field. [Section 3.7]

By convention the executing process places appropriate values in the gen-
eral purpose registers a0-a3 immediately prior to executing the SYSCALL
instruction. The Support Level’s SYSCALL exception handler will then
perform some service on behalf of the U-proc executing the SYSCALL in-
struction depending on the value found in a0.

Upon successful completion of a SYSCALL request any return status is
placed in v0, and control is returned to the calling process at the instruc-
tion immediately following the SYSCALL instruction. Similar to what the
Nucleus does when returning from a successful SYSCALL request [Section
3.5.12], the Support Level’'s SYSCALL exception handler must also incre-
ment the PC by 4 in order to return control to the instruction after the
SYSCALL instruction.

In particular, if a U-proc executes a SYSCALL instruction and a0 con-
tained a valid positive value then the Support Level should perform one of
the services described below.

4.7.1 Get_TOD (SYS1)

When this service is requested, it causes the number of microseconds since
the system was last booted/reset to be placed/returned in the U-proc’s vO
register.

The SYS1 service is requested by the calling U-proc by placing the value
1 in a0 and then executing a SYSCALL instruction.

The following C code can be used to request a SYS1:

unsigned int retValue = SYSCALL (GETTOD, O, 0, 0);

Where the mnemonic constant GETTOD has the value of 1.

60 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.7.2 Terminate (SYS2)

This services causes the executing U-proc to cease to exist. The SYS2 service
is essentially a user-mode “wrapper” for the kernel-mode restricted NSYS2
service.

The SYS2 service is requested by the calling process by placing the value
2 in a0 and then executing a SYSCALL instruction.

The following C code can be used to request a SYS2:

SYSCALL (TERMINATE, 0, 0, 0);

Where the mnemonic constant TERMINATE has the value of 2.

4.7.3 Write_To Printer (SYS3)

When requested, this service causes the requesting U-proc to be suspended
until a line of output (string of characters) has been transmitted to the printer
device associated with the U-proc.

Once the process resumes, the number of characters actually transmitted
is returned in vO.

The SYS3 service is requested by the calling U-proc by placing the value 3
in a0, the virtual address of the first character of the string to be transmitted
in al, the length of this string in a2, and then executing a SYSCALL
instruction. Once the process resumes, the number of characters actually
transmitted is returned in vO if the write was successful. If the operation
ends with a status other than “Device Ready” (1), the negative of the device’s
status value is returned in vO0.

It is an error to write to a printer device from an address outside of the
requesting U-proc’s logical address space, request a SYS3 with a length less
than 0, or a length greater than 128. Any of these errors should result in the
U-proc being terminated (SYS2).

The following C code can be used to request a SYS3:

int retValue = SYSCALL (WRITEPRINTER, char *virtAddr,
int len, 0);

Where the mnemonic constant WRITEPRINTER has the value of 3.

4.7. THE SYSCALL EXCEPTION HANDLER 61

4.7.4 Write To Terminal (SYS4)

When requested, this service causes the requesting U-proc to be suspended
until a line of output (string of characters) has been transmitted to the
terminal device associated with the U-proc.

The SYS4 service is requested by the calling U-proc by placing the value 4
in a0, the virtual address of the first character of the string to be transmitted
in al, the length of this string in a2, and then executing a SYSCALL
instruction. Once the process resumes, the number of characters actually
transmitted is returned in vO if the write was successful. If the operation
ends with a status other than “Character Transmitted” (5), the negative of
the device’s status value is returned in vO.

It is an error to write to a terminal device from an address outside of the
requesting U-proc’s logical address space, request a SYS4 with a length less
than 0, or a length greater than 128. Any of these errors should result in the
U-proc being terminated (SYS2).

The following C code can be used to request a SYS4:

int retValue = SYSCALL (WRITETERMINAL, char *virtAddr,
int len, 0);

Where the mnemonic constant WRITETERMINAL has the value of 4.

4.7.5 Read From Terminal (SYS5)

int SYS5 (READ FROM TERMINAL, char *addr) When requested, this ser-
vice causes the requesting U-proc to be suspended until a line of input (string
of characters) has been transmitted from the terminal device associated with
the U-proc.

The SYS5 service is requested by the calling U-proc by placing the value
5 in a0, the virtual address of a string buffer where the data read should
be placed in al, and then executing a SYSCALL instruction. Once the
process resumes, the number of characters actually transmitted is returned
in v0 if the read was successful. If the operation ends with a status other
than “Character Received” (5), the negative of the device’s status value is
returned in vO.

Attempting to read from a terminal device to an address outside of the
requesting U-proc’s logical address space is an error and should result in the

62 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

U-proc being terminated (SYS2).
The following C code can be used to request a SYS5:

int retValue = SYSCALL (READTERMINAL, char *virtAddr,
0, 0);

Where the mnemonic constant READTERMINAL has the value of 5.

4.8 The Program Trap Exception Handler

For all Program Trap exceptions [Section 3.7.2], the nucleus either treats the
exception as a NSYS2 or “passes up” the handling of the exception if the
offending process was provided a non-NULL value for its Support Structure
pointer when it was created. [Section 3.7.2]

Assuming that the handling of the exception is to be passed up (non-
NULL Support Structure pointer) and the appropriate sup_exceptContext
fields of the Support Structure were correctly initialized, execution continues
with the Support Level’s general exception handler, which should then pass
control to the Support Level’s Program Trap exception handler. The pro-
cessor state at the time of the exception will be in the Support Structure’s
corresponding sup_exceptState field. [Section 3.7]

The Support Level’s Program Trap exception handler is to terminate
the process in an orderly fashion; perform the same operations as a SYS2
request.[Section 4.7.2]

Important Point: If the process to be terminated is currently holding mu-
tual exclusion on a Support Level semaphore (e.g. Swap Pool semaphore),
mutual exclusion must first be released (NSYS4) before invoking the Nucleus
terminate command (NSYS2).

4.9 Process Initialization and test

The final step in Nucleus initialization is the instantiation of a single process
(kernel-mode on, interrupts enabled) whose PC is set to test. [Section 3.1]
While test was the name/external reference to a function that exercised the
Level 3/Phase 2 code, in Level 4/Phase 3 it will be used as the instantiator

4.9. PROCESS INITIALIZATION AND TEST 63

process (InstantiatorProcess).?

The InstantiatorProcess will perform the following tasks:
e Initialize the Level 4/Phase 3 data structures. These are:

— The Swap Pool table and Swap Pool semaphore. [Section 4.4.1]

— Each (potentially) sharable peripheral 1/O device should have a
semaphore defined for it. These semaphores will be used for mu-
tual exclusion (protect access to each device’s device registers) and
therefore should all be initialized to one. Since terminal devices
are actually two independent sub-devices, each terminal device
should have two mutual exclusion semaphores defined for it: one
for reading from the terminal and one for writing to the terminal.
[Section 5.7-pops]

e Initialize and launch (NSYS1) between 1 and 8 U-procs.
e Fither:

— Terminate (NSYS2) after all of its U-proc “children” processes
conclude. This will drive Process Count to zero, triggering the
Nucleus to invoke HALT. [Section 3.2]

— Perform a P (NSYS3) operation on a private semaphore initial-
ized to 0. In this case, after all the U-proc “children” conclude,
the Nucleus scheduler will detect deadlock and invoke PANIC.
[Section 3.2]

Technical Point: A careful reading of the Level 4/Phase 3 specification
reveals that there are actually no purposefully shared peripheral devices.
Each of the [1..8] U-procs has its own flash device (backing store), printer,
and terminal device(s). Hence, one does not actually need an array of mutual
exclusion semaphores to protect access to device registers. However, for
purposes of correctness (or more appropriate: to protect against erroneous
behavior) and future phase compatibility, it is strongly recommended one
define and use this array of mutual exclusion device register semaphores.

30ne is, of course, free to rename this function, however, that will entail going back
and editing one’s already completed Level 3/Phase 2 code.

64 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.9.1 Initializing a U-proc

To launch a U-proc, one simply sets up the parameters for a NSYS1, followed
by the actual execution of the NSYS1 Nucleus service. [Section 3.5.1]
The NSYS1 Nucleus service takes two parameters:

e The initial processor state for the U-proc.

e A pointer to an initialized Support Structure for the U-proc.

Initial Processor State for a U-proc

Each U-proc’s initial processor state should have its:

PC (and s_t9) set to 0x8000.00B0; the address of the start of the .text
section. [Section 10.3.1-pops]

SP set to 0xC000.0000 [Section 4.2]

Status set for user-mode with all interrupts and the processor Local
Timer enabled.

EntryHi.ASID set to the process’s unique ID; an integer from [1..§]

Important Point: Each U-proc MUST be assigned a unique, non-zero
ASID.

Initialization of a Support Structure for a U-proc

Since the Support Level will launch and execute between 1 and 8 U-procs,
there needs to be a pool of (up to) 8 Support Structures.

The recommended approach is to declare a static array of 8 Support
Structures in test. Using an index variable (ASID?) one can easily obtain
the address of the next unused Support Structure to be initialized and used
for the next U-proc launch (NSYS1).

A Support Structure must contain all the fields necessary for the Support
Level to support both paging and passed up SYSCALL services. [Section
3.7] This includes:

e sup_asid: The process’s ASID.

4.10.

SMALL SUPPORT LEVEL OPTIMIZATIONS 65

sup_exceptState[2]: The two processor state (state_t) areas where
the processor state at the time of the exception is placed by the Nucleus
for passing up exception handling to the Support Level.

sup_exceptContext [2]: The two processor context (context_t) sets.
Each context is a PC/SP/Status combination. These are the two
processor contexts which the Nucleus uses for passing up exception
handling to the Support Level.

sup_privatePgTbl [32]: The process’s Page Table.

sup_stackTLB[500]: The stack area for the process’s TLB exception
handler. An integer array of 500 is a 2Kb area.

sup_stackGen[500]: The stack area for the process’s Support Level
general exception handler.

Only the sup_asid, sup_exceptContext[2], and sup privatePgTbl[32]
[Section 4.2.1] require initialization prior to issuing the NSYSI.
To initialize a processor context area one performs the following:

Set the two PC fields. One of them (0 - PGFAULTEXCEPT) should
be set to the address of the Support Level’s TLB handler, while the
other one (1 - GENERALEXCEPT) should be set to the address of the
Support Level’s general exception handler.

Set the two Status registers to: kernel-mode with all interrupts and
the Processor Local Timer enabled.

Set the two SP fields to utilize the two stack spaces allocated in the
Support Structure. Stacks grow “down” so set the SP fields to the
address of the end of these areas. e.g. ... = &(...sup_stackGen[499])

4.10 Small Support Level Optimizations

There are a number of small optimizations that one can undertake to improve
the performance/organization of the Support Level.
In no particular order:

Update the TLB by using TLBP and TLBWI instead of TLBCLR.
[Section 4.5.2]

66

CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

When a U-proc terminates, mark all of the frames it occupied as un-
occupied. [Section 4.4.1].

This has the potential to eliminate extraneous writes to the backing
store.

Improve the Pandos page replacement algorithm to first check for an
unoccupied frame before selecting an occupied frame to use.

This will turn an O(1) operation into an O(n) operation in exchange
for fewer I/O (write) operations.

Read each U-proc’s header information and initialize the Page Table
entries associated with each U-proc’s .text pages as read only (D bit
field set to 0/off). [Section 10.3.1-pops]

Read Pandos’s .core header information and situate the Swap Pool im-
mediately after the .text and .data areas in RAM.

This eliminates the need to overestimate the size of the operating sys-
tem.

Introduce a masterSemaphore for a more graceful conclusion /termination
of test.

test cannot conclude before all of its spawned U-procs, otherwise, the
Nucleus will prematurely terminate them. Instead of blocking test on
a semaphore and forcing a PANIC when all the spawned U-procs have
concluded, one can implement a more graceful termination of test.
[Section 4.9]

Introduce a new Support Level-level semaphore; the zero-initialized
masterSemaphore. After launching all the U-procs, test should re-
peatedly issue a NSYS3 (V operation) on this semaphore. This loop
should iterate UPROCMAX times: the number of U-proc’s launched: [1..8]

Whenever a U-proc terminates, either normally, or abnormally, it should
first perform a NSYS4 (V operation) on the masterSemaphore. Hence,
test will go to sleep n times, and be woken up n times, where n is
the number of launched U-procs (n € [1..8]). After this loop concludes,
test concludes by issuing a NSYS2, which should trigger a HALT by
the Nucleus.

Allocate per-U-proc TLB, and general exception handler stacks directly
from RAM. [Section 4.9.1]

4.11. NUTS AND BOLTS 67

Directly allocate the two stack spaces per U-proc (one for the Support
Level’s TLB exception handler, and one for the Support Level’s gen-
eral exception handler) from RAM, instead of as fields in the Support
Structure. The recommended RAM space to be used are the frames
directly below RAMTOP, avoid the actual last frame of RAM (stack
page for test).

Important Point: SP values are always the end of the area, not the
start. Hence, to use the penultimate RAM frame as a U-proc’s stack

space for one of its Support Level handlers, one would assign the SP
value to RAMTOP-PAGESIZE.

e Implement allocate and deallocate functionality for the Support Struc-
tures instead of directly accessing a static array. [Section 4.9.1]
Instead of directly accessing elements of a static array of Support
Structures, one can reuse the technique from Level 2/Phase 1 [Section
2.1]: Declare a null-initialized pointer to a Support Structure-free list
(stack?) of unused Support Structures. Upon entry, test iterates over
the static array of Support Structures, invoking a new deallocate
method to add each Support Structure to the free list. Whenever a
new Support Structure is needed to support a new U-proc, a call to
allocate returns a pointer to a Support Structure, allocated from the
free list. Furthermore, whenever a U-proc terminates (SYS2), a call is
made to deallocate to return the Support Structure to the free list.

4.11 Nuts and Bolts

4.11.1 Initiating I/O Operations

A peripheral’s device driver is typically made up of two parts: an upper part
and a lower part.

The lower part is the code that handles the interrupt from the device
upon completion of an operation. In Pandos this is handled by the Nucleus.

The upper part is the code that initiates an operation: the writing of
some of the device’s registers (except the COMMAND field) followed by a
NSYS5 (which sets the COMMAND field). In Pandos this code is distributed
throughout the Support Level.

68

CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

e For flash devices, the code to initiate reading and writing is part of (or

at least called by) the Pager. [Section 4.4.2]

e For printer devices the code is localized in the SYS3 implementation

code. [Section 4.7.3]

e For terminal devices the code is localized in the SYS4 & SYS5 imple-

mentation code. [Section 4.7.4]

4.11.2 Module Decomposition

One possible module decomposition is as follows:

1. initProc.c This module implements test and exports the Support Level’s

global variables. (e.g. device semaphores [Section 4.9], and optionally
a masterSemaphore [Section 4.10]

. vmSupport.c This module implements the TLB exception handler (The

Pager). Since reading and writing to each U-proc’s flash device is lim-
ited to supporting paging, this module should also contain the func-
tion(s) for reading and writing flash devices.

Additionally, the Swap Pool table and Swap Pool semaphore are local
to this module. Instead of declaring them globally in initProc.c they
can be declared module-wide in vmSupport.c. The test function will
now invoke a new “public” function initSwapStructs which will do
the work of initializing both the Swap Pool table and accompanying
semaphore.

Technical Point: Since the code for the TLB-Refill event handler
was replaced (without relocating the function), uTLB_RefillHandler
should still be found in the Level 3/Phase 2 exceptions.c file.

sysSupport.c This module implements the Support Level’s:

e general exception handler. [Section 4.6]
e SYSCALL exception handler. [Section 4.7]

e Program Trap exception handler. [Section 4.8]

4.12. TESTING 69

4.11.3 Accessing the libumps Library

Accessing the CPO registers and the BIOS-implemented services/instructions
in C (e.g. WAIT, LDST) is via the libumps library. [Chapter 7-pops]
Simply include the line

#include °‘/usr/include/umps3/umps/libumps.h’’

in one’s source files.*

4.12 Testing

There is a provided set of possible U-proc programs that will “exercise”
your code. These programs will generate page faults in addition to issuing
SYSCALLs 1-5 and purposefully causing Program Traps. [Appendix A]

The supplied U-proc programs also come with their own Makefile con-
figured to compile, link (using the U-proc linker script, crtsi.o), create a
corresponding flash device (a .umps file) [Section 11.2-pops|, and preload the
U-proc’s load image on to a flash device.

The recommended directory structure is to create a testers directory par-
allel to the other Pandos directories: h, phasel, phase2, and phase3 [Section
1.2]

As with any non-trivial system, you are strongly encouraged to use the
make program to maintain your code. A sample Makefile has been supplied.
See Chapter 10 in the POPS reference for more compilation details.

Once your (nine?) source files (two from Phase 1, four from Phase 2, and
three from Phase 3) have been correctly compiled, linked together (with ap-
propriate linker script, crtso.o, and libumps.o), and post-processed with
umps3-elf2umps (all performed by the sample Makefile), your code can be
tested by launching the uMPS3 emulator. At a terminal prompt, enter:

umps3

One uses the uMPS3 Machine Configuration Panel [Section 12.2.1-pops]
to set various parameters appropriate for testing Pandos:

4The file libumps.h is part of the uMPS3 distribution.
/usr/include/umps3/umps/ is the recommended installation location for this file.

70 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

e The TLB Floor Address must be set to either 0x4000.0000 or 0x8000.0000.

e The amount of “installed” RAM must be sufficiently large enough for
the OS code, the Swap Pool and stack page for test. (e.g. 128 frames)

e Using the Devices tab one maps a flash device (.umps) “file” with the
corresponding pMPS3 flash device. [Section 12.2.1-pops] Simply use
the Browse button to locate the appropriate .umps file (in the testers
directory) and enable the device via the checkbox.

