
The best way to prepare [to be a programmer] is to write pro-
grams, and to study great programs that other people have writ-
ten. In my case, I went to the garbage cans at the Computer
Science Center and fished out listings of their operating system.

Bill Gates

3
PandOSplus Phase 2 - Level 3: The

Nucleus

Level 3, the Nucleus, builds on the previous levels in two key ways:

1. Receives control from the exception handling facility of Level 1. There
are two categories of exceptions [Chapter 3-pops ]:

� TLB-Refill events, a relatively frequent occurrence which is trig-
gered during address translation when no matching entries are
found in the TLB. Since address translation will not be intro-
duced until the Support Level, the handling of TLB-Refill events
is delayed until then.

� All other exception types, including device/timer interrupts, which,
by definition, occur infrequently. This category can be further
broken down into

– Interrupts: peripheral devices and internal timers

– System Service calls (SYSCALL)

– TLB exceptions - exceptions related to the memory manage-
ment unit (MMU)

– Program Trap exceptions (e.g. Bus Error)

18



19

2. Using the data structures from Level 2 [Chapter 2], and the facility to
handle both system service calls and device interrupts, timer interrupts
in particular, provide a process scheduler – support multiprogramming.

Hence, the purpose of the Nucleus is to provide an environment in which
asynchronous sequential processes (i.e. heavyweight threads) exist, each
making forward progress as they take turns sharing the processor. Further-
more, the Nucleus provides these processes with exception handling routines,
low-level synchronization primitives, and a facility for “passing up” the han-
dling of Program Trap, TLB exceptions and certain SYSCALL requests to
the Support Level. [Chapter 4]

Important Point: There are two classes of priority for PandOSplus pro-
cesses: low priority and high priority processes.

Important Point: Since virtual memory is not supported until the Support
Level, all addresses at this level are assumed to be physical addresses.

In summary, after some one-time Nucleus initialization code, the Nucleus
will repeatedly dispatch a process, i.e. remove a pcb from the non-empty max-
priority Ready Queue and perform a LDST on the processor state stored in
the pcb (p s). This Current Process will run until:

� It makes a system call (SYSCALL). The Nucleus will handle the sys-
tem call or pass along the handling to the Support Level. Some system
calls block the Current Process - the pcb is placed on the ASL and
the Scheduler is called to dispatch the next job. If the system call is
non-blocking, control is returned to the Current Process.

� It terminates; which is signaled via a system call. The Nucleus will call
the Scheduler to dispatch the next process on the Ready Queue.

� The timer assigned to the Scheduler generates an interrupt; the Current
Process’s quantum/time slice has expired. Its pcb is enqueued back on
the Ready Queue and the Scheduler is called to dispatch the next job.

� A device interrupt occurs (exclusive of the timer assigned to the Sched-
uler). The interrupt is acknowledged, and the device’s status code is



20 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

passed along to the pcb (i.e. process) that got unblocked as a result of
the interrupt; the pcb that was waiting for the I/O to complete. The
newly unblocked pcb is enqueued back on the Ready Queue and control
is returned to the Current Process unless the newly unblocked process
has higher prority of the Current Process. In this latter case instaed
of returning the control to the Current Process the following actions
must be taken:

– copy the processor state at the time of the exception (located at
the start of the BIOS Data Page [Section 3.2.2-pops ]) into the
Current Process’s pcb (p s),

– place Current Process on the Ready Queue; transitioning the Cur-
rent Process from the “running” state to the “ready” state,

– call the Scheduler.

� If the Scheduler ever discovers that both the Ready Queues are empty
it will either HALT execution (no more processes to run), WAIT for
an I/O to complete (which will unblock a pcb and populate the Ready
Queue), or PANIC (halt execution in the presence of deadlock).

Hence the Nucleus’s functionality can be broken down into five main cate-
gories:

� Nucleus initialization. [Section 3.1]

� The Scheduler. [Section 3.2]

� SYSCALL processing. [Section 3.5]

� Device interrupt handler. [Section 3.6]

� The passing up of the handling of all other events. This includes TLB-
Refill events [Section 3.3], SYSCALLs not handled at this level, page
faults, Program Trap exceptions, etc. [Section 3.7]

3.1 Nucleus Initialization

Every program needs an entry point (i.e. main()). The entry point for
Pandos performs the Nucleus initialization, which includes:



3.1. NUCLEUS INITIALIZATION 21

1. Declare the Level 3 global variables. This should include:

� Process Count: integer indicating the number of started, but not
yet terminated processes.

� Soft-block Count: A process can be either in the “ready,” “run-
ning,” or “blocked” (also known as “waiting”) state. This integer
is the number of started, but not terminated processes that in are
the “blocked” state due to an I/O or timer request.

� Ready Queue: Tail pointer to a queue of pcbs that are in the
“ready” state.

� Current Process: Pointer to the pcb that is in the “running” state,
i.e. the current executing process.

� Device Semaphores: The Nucleus maintains one integer semaphore
for each external (sub)device in µMPS3, plus one additional semaphore
to support the Pseudo-clock. [Section 3.6.3]
Since terminal devices are actually two independent sub-devices,
the Nucleus maintains two semaphores for each terminal device.
[Section 5.7-pops ]

2. Populate the Processor 0 Pass Up Vector. The Pass Up Vector is part
of the BIOS Data Page, and for Processor 0, is located at 0x0FFF.F900.
[Section 8.5-pops ]

The Pass Up Vector is where the BIOS finds the address of the Nucleus
functions to pass control to for both TLB-Refill events and all other
exceptions. Specifically,

� Set the Nucleus TLB-Refill event handler address to

xxx->tlb refll handler =

(memaddr) uTLB RefillHandler;

where memaddr, in types.h, has been aliased to unsigned int.

Since address translation is not implemented until the Support
Level, uTLB RefillHandler is a place holder function whose code
is provided. [Section 3.3] This code will then be replaced when
the Support Level is implemented.



22 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

� Set the Stack Pointer for the Nucleus TLB-Refill event handler to
the top of the Nucleus stack page: 0x2000.1000. Stacks in µMPS3
grow down.

� Set the Nucleus exception handler address to the address of your
Level 3 Nucleus function (e.g. foobar) that is to be the entry
point for exception (and interrupt) handling [Section 3.4]:

xxx->exception handler = (memaddr) fooBar;

� Set the Stack pointer for the Nucleus exception handler to the top
of the Nucleus stack page: 0x2000.1000.

3. Initialize the Level 2 (phase 1 - see Chapter 2) data structures:

initPcbs()

initSemd()

4. Initialize all Nucleus maintained variables: Process Count (0), Soft-
block Count (0), Ready Queue (mkEmptyProcQ()), and Current Process
(NULL). Since the device semaphores will be used for synchronization,
as opposed to mutual exclusion, they should all be initialized to zero.

5. Load the system-wide Interval Timer with 100 milliseconds. [Section
3.6.3]

6. Instantiate a single low priority process, place its pcb in the Ready
Queue, and increment Process Count. A process is instantiated by al-
locating a pcb (i.e. allocPcb()), and initializing the processor state
that is part of the pcb. In particular this process needs to have inter-
rupts enabled, the processor Local Timer enabled, kernel-mode on, the
SP set to RAMTOP (i.e. use the last RAM frame for its stack), and
its PC set to the address of test. Furthermore, set the remaining pcb
fields as follows:

� Set all the Process Tree fields to NULL.

� Set the accumulated time field (p time) to zero.

� Set the blocking semaphore address (p semAdd) to NULL.

� Set the Support Structure pointer (p supportStruct) to NULL.



3.1. NUCLEUS INITIALIZATION 23

Important Point: When setting up a new processor state one must
set the previous bits (i.e. IEp & KUp) and not the current bits (i.e.
IEc & KUc) in the Status register for the desired assignment to take
effect after the initial LDST loads the processor state. [Section 7.4-
pops ]

Test is a supplied function/process that will help you debug your Nu-
cleus. One can assign a variable (i.e. the PC) the address of a function
by using

yyy->p s.s pc = (memaddr) test;

Remember to declare test as “external” in your program by including
the line:

extern void test();

For rather technical reasons, whenever one assigns a value to the PC
one must also assign the same value to the general purpose register t9.
(a.k.a. s t9 as defined in types.h.) [Section 10.2-pops ]

7. Call the Scheduler.

Once main() calls the Scheduler its task is complete since control should
never return to main(). At this point the only mechanism for re-entering
the Nucleus is through an exception; which includes device interrupts. As
long as there are processes to run, the processor is executing instructions on
their behalf and only temporarily enters the Nucleus long enough to handle
a device interrupt or exception when they occur.

At boot/reset time the Nucleus is loaded into RAM beginning with the
second frame of RAM: 0x2000.1000. The first frame of RAM is reserved for
the Nucleus stack. Furthermore, Processor 0 will be in kernel-mode with
all interrupts masked, and the processor Local Timer disabled. The PC
is assigned 0x2000.1000 and the SP, which was initially set to 0x2000.1000
at boot-time, will now be some value less, due to the activation record for
main() that now sits on the stack. [Section 8.2-pops ]



24 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

3.2 The Scheduler

Your Nucleus should implement a multilayer Scheduler: a simple preemptive
round-robin schedule with a time slice value of 5 millisecond for low priority
processes and a a non-preemptive first come first served algorithm for high
priority processes.

Preemptive cpu scheduling requires the use of an interrupt generating
system clock. µMPS3 offers two choices: the single system-wide Interval
Timer or a processor’s Local Timer (PLT). [Section 4.1-pops ]

One should use the PLT to support per processor scheduling since the
Interval Timer is reserved for implementing Pseudo-clock ticks. [Section
3.6.3]

In its simplest form whenever the Scheduler is called it should dispatch
the “next” process in the Ready Queues.

� If the queue of high priority processes is not empty:

1. Remove the pcb from the head of the high priority Ready Queue
and store the pointer to the pcb in the Current Process field.

2. Perform a Load Processor State (LDST) on the processor state
stored in pcb of the Current Process (p s).

� otherwise

1. Remove the pcb from the head of the low priority Ready Queue
and store the pointer to the pcb in the Current Process field.

2. Load 5 milliseconds on the PLT. [Section 4.1.4-pops ]

3. Perform a Load Processor State (LDST) on the processor state
stored in pcb of the Current Process (p s).

Dispatching a process transitions it from a “ready” process to a “running”
process.

The Scheduler should behave in the following manner if both the Ready
Queues are empty:

1. If the Process Count is zero invoke theHALT BIOS service/instruction.
[Section 7.3.7-pops ] Consider this a job well done!



3.3. TLB-REFILL EVENTS 25

2. If the Process Count > 0 and the Soft-block Count > 0 enter a Wait
State. A Wait State is where the processor is not executing instruc-
tions, but “twiddling its thumbs” waiting for a device interrupt to oc-
cur. µMPS3 supports a WAIT instruction expressly for this purpose.
[Section 7.2.2-pops ]

Important Point: Before executing theWAIT instruction, the Sched-
uler must first set the Status register to enable interrupts and either
disable the PLT (also through the Status register), or load it with a
very large value. The first interrupt that occurs after entering a Wait
State should not be for the PLT.

3. Deadlock for Pandos is defined as when the Process Count > 0 and the
Soft-block Count is zero. Take an appropriate deadlock detected action;
invoke the PANIC BIOS service/instruction. [Section 7.3.6-pops ]

3.3 TLB-Refill events

As outlined above [Section 3.1], the Processor 0 Pass Up Vector’s Nucleus
TLB-Refill event handler address should be set to the address of your TLB-
Refill event handler (e.g. uTLB RefillHandler)

The code for this function, for Level 3/Phase 2 testing purposes should
be as follows:

void uTLB_RefillHandler () {

setENTRYHI(0x80000000);

setENTRYLO(0x00000000);

TLBWR();

LDST ((state_PTR) 0x0FFFF000);

}

Writers of the Support Level (Level 4/Phase 3) will replace/overwrite the
contents of this function with their own code/implementation.

3.4 Exception Handling

As described above [Section 3.1], at startup, the Nucleus will have populated
the Processor 0 Pass Up Vector with the address of the Nucleus exception



26 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

handler (fooBar) and the address of the Nucleus stack page (0x2000.1000).
Therefore, if the Pass Up Vector was correctly initialized, fooBar will be
called (with a fresh stack) after each and every exception, exclusive of TLB-
Refill events. Furthermore, the processor state at the time of the exception
(the saved exception state) will have been stored (for Processor 0) at the start
of the BIOS Data Page (0x0FFF.F000). [Section 3.2.2-pops ]
The cause of this exception is encoded in the .ExcCode field of the Cause
register (Cause.ExcCode) in the saved exception state. [Section 3.3-pops ]

� For exception code 0 (Interrupts), processing should be passed along
to your Nucleus’s device interrupt handler. [Section 3.6]

� For exception codes 1-3 (TLB exceptions), processing should be passed
along to your Nucleus’s TLB exception handler. [Section 3.7.3]

� For exception codes 4-7, 9-12 (Program Traps), processing should be
passed along to your Nucleus’s Program Trap exception handler. [Sec-
tion 3.7.2]

� For exception code 8 (SYSCALL), processing should be passed along
to your Nucleus’s SYSCALL exception handler. [Section 3.5]

Hence, the entry point for the Nucleus’s exception handling is in essence
a case statement that performs a multi-way branch depending on the cause
of the exception.

Important Point: To determine if the Current Process was executing in
kernel-mode or user-mode, one examines the Status register in the saved
exception state. In particular, examine the previous version of the KU bit
(KUp) since the processor’s exception handling circuitry will have performed
a stack push on theKU/IE stacks in the Status register before the exception
state was saved. [Section 3.1-pops ]

3.5 SYSCALL Exception Handling

A System Call (SYSCALL) exception occurs when the SYSCALL assem-
bly instruction is executed.

By convention, the executing process places appropriate values in the gen-
eral purpose registers a0 – a3 immediately prior to executing the SYSCALL



3.5. SYSCALL EXCEPTION HANDLING 27

instruction. The Nucleus will then perform some service on behalf of the pro-
cess executing the SYSCALL instruction depending on the value found in
a0.

In particular, if the process making a SYSCALL request was in kernel-
mode and a0 contained a value in the negative range then the Nucleus should
perform one of the services described below.

3.5.1 Create Process (NSYS1)

When requested, this service causes a new process, said to be a progeny of
the caller, to be created. a1 should contain a pointer to a processor state
(state t *). This processor state is to be used as the initial state for the
newly created process. The process requesting the NSYS1 service continues
to exist and to execute. If the new process cannot be created due to lack of
resources (e.g. no more free pcb’s), an error code of -1 is placed/returned in
the caller’s v0, otherwise, return the process id of the newly created process
in the caller’s v0.

Good design calls for tight/strong cohesion and loose coupling between
modules/classes/OS Levels, etc. Level 2 implements pcbs, and Level 3 utilizes
queues of pcbs to create a basic multiprogramming environment. However, it
is the Support Level that handles address translation as well as all exceptions
beyond I/O interrupts and the first eight system calls (and then, only if in
kernel-mode). The design question then is how to provide Support Level
access to pcb fields that will only be used in the Support Level.

The standard approach, at least in systems-level programming such as
an OS, is to define a structure containing the additional Support Level fields
(support t) and then add a pointer (support t *) to the pcb. The Support
Level code needing access to these fields will execute a NSYS8 [Section 3.5.8]
which returns a pointer to the Current Process’s support t structure. This
provides Support Level access to relevant pcb fields while hiding the Level 3
(and Level 2) pcb fields.

The NSYS1 service is requested by the calling process by placing the
value -1 in a0, a pointer to a processor state in a1, set the process priority
in a2, 0 for low priority, high priority otherwise, (optionally) a pointer to a
Support Structure in a3, and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS1:

int retValue = SYSCALL (CREATEPROCESS,



28 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

state t *statep, int prio, support t * supportp);

Where the mnemonic constant CREATEPROCESS has the value of -1.
The newly populated pcb is placed on the Ready Queue and is made

a child of the Current Process. Process Count is incremented by one, and
control is returned to the Current Process. [Section 3.5.12]

In summary, for NSYS1, one allocates a new pcb and initializes its fields:

� p s from a1.

� p prio from a2. If no parameter is provided, this field is set to NULL.

� p supportStruct from a3. If no parameter is provided, this field is set
to NULL.

� A new value must be generated and assigned to p pid.

� The process queue fields (e.g. p next) by the call to insertProcQ

� The process tree fields (e.g. p child) by the call to insertChild.

� p time is set to zero; the new process has yet to accumulate any cpu
time.

� p semAdd is set to NULL; this pcb/process is in the “ready” state, not
the “blocked” state.

3.5.2 Terminate Process (NSYS2)

This services causes the executing process or another process to cease to
exist. [Section 3.9] In addition, recursively, all progeny of that process are
terminated as well. Execution of this instruction does not complete until all
progeny are terminated, after which the Scheduler should be called.

The NSYS2 service is requested by the calling process by placing the
value -2 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS2:

SYSCALL (TERMINATEPROCESS, int pid, 0, 0);

Where the mnemonic constant TERMINATEPROCESS has the value of -2.



3.5. SYSCALL EXCEPTION HANDLING 29

This service terminates the calling process id pid is zero, the process
whose identifier is pid otherwise.

3.5.3 Passeren (P) (NSYS3)

This service requests the Nucleus to perform a P operation on a binary
semaphore.

The P or NSYS3 service is requested by the calling process by placing
the value -3 in a0, the physical address of the semaphore to be P’ed in a1,
and then executing the SYSCALL instruction.

Depending on the value of the semaphore, control is either returned to
the Current Process, or this process is blocked on the ASL (transitions from
“running” to “blocked”) and the Scheduler is called.

The following C code can be used to request a NSYS3:

SYSCALL (PASSEREN, int *semaddr, 0, 0);

Where the mnemonic constant PASSEREN has the value of -3.

3.5.4 Verhogen (V) (NSYS4)

This service requests the Nucleus to perform a V operation on a binary
semaphore.

The V or NSYS4 service is requested by the calling process by placing
the value -4 in a0, the physical address of the semaphore to be V’ed in a1,
and then executing the SYSCALL instruction.

Depending on the value of the semaphore, control is either returned to
the Current Process, or this process is blocked on the ASL (transitions from
“running” to “blocked”) and the Scheduler is called.

The following C code can be used to request a NSYS4:

SYSCALL (VERHOGEN, int *semaddr, 0, 0);

Where the mnemonic constant VERHOGEN has the value of -4.



30 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

3.5.5 Do IO Device (NSYS5)

Pandos supports only synchronous I/O; an I/O operation is initiated, and
the initiating process is blocked until the I/O completes. In order to begin
an I/O operation a process should assign a value to the Command field of
the device register. NSYS5 assign a value to that command field for that
device. Hence, a NSYS5 is used to transition the Current Process from the
“running” state to a “blocked” state.

More formally, this service performs a P operation on the semaphore that
the Nucleus maintains for the I/O device indicated by the value in a1.

Since the semaphore that will have a P operation performed on it is a syn-
chronization semaphore, this call should always block the Current Process
on the ASL, after which the Scheduler is called.

Terminal devices are two independent sub-devices, and are handled by
the NSYS5 service as two independent devices. Hence each terminal device
has two Nucleus maintained semaphores for it; one for character receipt and
one for character transmission. [Section 5.7-pops ]

As discussed below [Section 3.6], the Nucleus will perform a V operation
on the Nucleus maintained semaphore whenever that (sub)device generates
an interrupt.

Once the process resumes after the occurrence of the anticipated inter-
rupt, the (sub)device’s status word is returned in v0. For character trans-
mission and receipt, the status word, in addition to containing a device com-
pletion code, will also contain the character transmitted or received.

The NSYS5 service is requested by the calling process by placing the
value -5 in a0, tha address of the command field in a1 and the value to de
assigned in a2.

The following C code can be used to request a NSYS5:

int ioStatus = SYSCALL (DOIO, int *commandAddr,

int commandValue, 0);

Where the mnemonic constant DOIO has the value of -5.

3.5.6 Get CPU Time (NSYS6)

This service requests that the accumulated processor time (in microseconds)
used by the requesting process be placed/returned in the caller’s v0. Hence,



3.5. SYSCALL EXCEPTION HANDLING 31

the Nucleus records (in the pcb: p time) the amount of processor time used
by each process. [Section 3.8]

The NSYS6 service is requested by the calling process by placing the
value -6 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS6:

cpu t cpuTime = SYSCALL (GETCPUTIME, 0, 0, 0);

Where the mnemonic constant GETCPUTIME has the value of -6.

3.5.7 Wait For Clock (NSYS7)

This service performs a P operation on the Nucleus maintained Pseudo-clock
semaphore. This semaphore is V’ed every 100 milliseconds by the Nucleus.
[Section 3.6.3]

Since the Pseudo-clock semaphore is a synchronization semaphore, this
call should always block the Current Process on the ASL, after which the
Scheduler is called. Hence, a NSYS7 is used to transition the Current Process
from the “running” state to a “blocked” state.

The NSYS7 service is requested by the calling process by placing the
value -7 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS7:

SYSCALL (WAITCLOCK, 0, 0, 0);

Where the mnemonic constant WAITCLOCK has the value of -7.

3.5.8 Get SUPPORT Data (NSYS8)

This service requests a pointer to the Current Process’s Support Structure.
Hence, this service returns the value of p supportStruct from the Current
Process’s pcb. If no value for p supportStruct was provided for the Current
Process when it was created, return NULL.

The NSYS8 service is requested by the calling process by placing the
value -8 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS8:



32 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

support t *sPtr = SYSCALL (GETSUPPORTPTR, 0, 0, 0);

Where the mnemonic constant GETSUPPORTPTR has the value of -8.

3.5.9 Get Process ID (NSYS9)

The NSYS9 service is requested by the calling process by placing the value
-9 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS9:

int pid or ppid = SYSCALL (GETPID, int parent, 0, 0);

Where the mnemonic constant GETPID has the value of -9.
The process id (pid) of the calling processs is placed/returned in the

caller’s v0if parent is zero. The process id of the parent process (pid) of
the calling processs is placed/returned in the caller’s v0otherwise. (it should
return zero as the parent identifier of the root process).

3.5.10 Yield (NSYS10)

This service causes the calling process to relinquish the CPU. The process is
moved to the end of the queue for its priority.

The NSYS10 service is requested by the calling process by placing the
value -10 in a0 and then executing the SYSCALL instruction.

The following C code can be used to request a NSYS10:

SYSCALL (YIELD, 0, 0, 0);

Where the mnemonic constant YIELD has the value of -10.

3.5.11 NSYS1, NSYS2, ... in User-Mode

The SYSCALL identified by negative values are Nucleus services. These
services are considered privileged services and are only available to processes
executing in kernel-mode. Any attempt to request one of these services
while in user-mode should trigger a Program Trap exception response. Any
attempt to request a non-existent Nucleus service should trigger a Program
Trap exception too.



3.5. SYSCALL EXCEPTION HANDLING 33

In particular the Nucleus should simulate a Program Trap exception
when a privileged service is requested in user-mode. This is done by setting
Cause.ExcCode in the stored exception state to RI (Reserved Instruction),
and calling one’s Program Trap exception handler.

Technical Point: As described above [Section 3.4], the saved exception state
(for Processor 0) is stored at the start of the BIOS Data Page (0x0FFF.F000).
[Section 3.2.2-pops ]

3.5.12 Returning from a SYSCALL Exception

For SYSCALLs calls that do not block or terminate, control is returned to
the Current Process at the conclusion of the Nucleus’s SYSCALL exception
handler. Observe that the correct processor state to load (LDST) is the
saved exception state (located at the start of the BIOS Data Page [Section
3.4]) and not the obsolete processor state stored in the Current Process’s
pcb. The saved exception state was the state of the process at the time the
SYSCALL was executed. The processor state in the Current Process’s pcb
was the state of the process at the start of it current time slice/quantum.

Hence, any return value described above (e.g. NSYS6) needs to be put
in the specified register in the stored exception state.

Furthermore, SYSCALLs that do not result in process termination (even-
tually) return control to the process’s execution stream. This is done either
immediately (e.g. NSYS6) or after the process is blocked and eventually un-
blocked (e.g. NSYS5). In any event the PC that was saved is, as it is for
all exceptions, the address of the instruction that caused that exception –
the address of the SYSCALL assembly instruction. Without intervention,
returning control to the SYSCALL requesting process will result in an in-
finite loop of SYSCALL’s. To avoid this the PC must be incremented by
4 (i.e. the µMPS3 wordsize) prior to returning control to the interrupted
execution stream. While the PC needs to be altered, there is no need, in
this case, to make a parallel assignment to t9.

3.5.13 Blocking SYSCALLs

For SYSCALLs that block (NSYS3, NSYS5, and NSYS7), a number of
steps need to be performed:



34 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

� As described above [Section 3.5.12] the value of the PC must be incre-
mented by 4 to avoid an infinite loop of SYSCALLs.

� The saved processor state (located at the start of the BIOS Data
Page[Section 3.4]) must be copied into the Current Process’s pcb (p s).

� Update the accumulated CPU time for the Current Process. [Section
3.8]

� The Current Process is blocked on the ASL (insertBlocked), transi-
tioning the process from the “running” state, to the “blocked” state.

� Call the Scheduler.

3.6 Interrupt Exception Handling

A device or timer interrupt occurs when either a previously initiated I/O
request completes or when either a Processor Local Timer (PLT) or the
Interval Timer makes a 0x0000.0000 ⇒ 0xFFFF.FFFF transition.

Assuming that the (Processor 0) Pass Up Vector was properly initial-
ized by the Nucleus as part of Nucleus initialization [Section 3.1], and that
the Nucleus exception handler (fooBar) correctly decodes Cause.ExcCode
[Section 3.4], control should be passed to one’s Nucleus interrupt exception
handler.

Which interrupt lines have pending interrupts is set in Cause.IP. [Sec-
tion 3.3-pops ] Furthermore, for interrupt lines 3–7 the Interrupting Devices
Bit Map will indicate which devices on each of these interrupt lines have a
pending interrupt. [Section 5.2.2-pops ]

Since Pandos is intended for uniprocessor environments only, interrupt
line 0 may safely be ignored. [Chapter 5-pops ]

Note, many devices per interrupt line may have an interrupt request pend-
ing, and that many interrupt lines may simultaneously be on. Also, since each
terminal device is two sub-devices, each terminal device may have two inter-
rupts pending simultaneously as well. One should process only one interrupt
at a time: the interrupt with the highest priority. The lower the inter-
rupt line and device number, the higher the priority of the interrupt. When
there are multiple interrupts pending, and the interrupt exception handler
processes only the single highest priority pending interrupt, the interrupt



3.6. INTERRUPT EXCEPTION HANDLING 35

exception handler will be immediately re-entered as soon as interrupts are
unmasked again; effectively forming a loop until all the pending interrupts
are processed.

Since terminal devices are actually two sub-devices, both sub-devices may
have an interrupt pending simultaneously. For purposes of prioritizing pend-
ing interrupts, terminal transmission (i.e. writing to the terminal) is of higher
priority than terminal receipt (i.e. reading from the terminal). Hence, the
PLT (interrupt line 1) is the highest priority interrupt, while reading from
terminal 7 (interrupt line 7, device 7; read) is the lowest priority interrupt.

The interrupt exception handler’s first step is to determine which device
or timer with an outstanding interrupt is the highest priority.

Depending on the device, the interrupt exception handler will perform a
number of tasks.

3.6.1 Non-Timer Interrupts

1. Calculate the address for this device’s device register. [Section 5.1-pops ]

2. Save off the status code from the device’s device register.

3. Acknowledge the outstanding interrupt. This is accomplished by writ-
ing the acknowledge command code in the interrupting device’s device
register. Alternatively, writing a new command in the interrupting
device’s device register will also acknowledge the interrupt.

4. Perform a V operation on the Nucleus maintained semaphore associated
with this (sub)device. This operation should unblock the process (pcb)
which initiated this I/O operation and then requested to wait for its
completion via a NSYS5 operation.

5. Place the stored off status code in the newly unblocked pcb’s v0 register.

6. Insert the newly unblocked pcb on the Ready Queue, transitioning this
process from the “blocked” state to the “ready” state.

7. Return control to the Current Process: Perform a LDST on the saved
exception state (located at the start of the BIOS Data Page [Section
3.4]).



36 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

Important Point: It is possible that the V operation (increment the indi-
cated semaphore and unblock a pcb) returns NULL instead of a pcb. This
can happen if while waiting for the initiated I/O operation to complete, an
ancestor of this pcb was terminated. In this case, simply return control to
the Current Process.

Important Point: It is also possible that there is no Current Process to
return control to. This will be the case when the Scheduler executes the
WAIT instruction instead of dispatching a process for execution. [Section
3.2]

3.6.2 Processor Local Timer (PLT) Interrupts

The PLT is used to support CPU scheduling. The Scheduler will load the
PLT with the value of 5 milliseconds whenever it dispatches a process. [Sec-
tion 3.2]

This “running” process will either:

� Terminate. Execute a NSYS2 or cause an exception without having set
a Support Structure address. [Section 3.7]

� Transition from the “running” state to the “blocked” state; execute a
NSYS3, NSYS5, or NSYS7.

� Be interrupted by a PLT interrupt.

The last option means that the Current Process has used up its time quan-
tum/slice but has not completed its CPU Burst. Hence, it must be transi-
tioned from the “running” state to the “ready” state.

The PLT portion of the interrupt exception handler should therefore:

� Acknowledge the PLT interrupt by loading the timer with a new value.
[Section 4.1.4-pops ]

� Copy the processor state at the time of the exception (located at the
start of the BIOS Data Page [Section 3.2.2-pops ]) into the Current
Process’s pcb (p s).

� Place the Current Process on the Ready Queue; transitioning the Cur-
rent Process from the “running” state to the “ready” state.



3.6. INTERRUPT EXCEPTION HANDLING 37

� Call the Scheduler.

3.6.3 The System-wide Interval Timer and the Pseudo-
clock

The Pseudo-clock is a facility provided by the Nucleus for the Support Level.
The Nucleus promises to perform a V operation, every 100 milliseconds,
on a special Nucleus maintained semaphore; the Pseudo-clock semaphore.
[Section 3.1]
This periodic V operation is called a Pseudo-clock Tick.

To perform a P operation on the Pseudo-clock semaphore (i.e. transition
from the “running” state to the “blocked” state on this semaphore), the
Current Process will perform a NSYS7.

Since the Interval Timer is only used for this purpose, all line 2 interrupts
indicate that it is time to P the Pseudo-clock semaphore; a Pseudo-clock tick.

The Interval Timer portion of the interrupt exception handler should
therefore:

1. Acknowledge the interrupt by loading the Interval Timer with a new
value: 100 milliseconds. [Section 4.1.3-pops ]

2. Unblock ALL pcbs blocked on the Pseudo-clock semaphore. Hence,
the semantics of this semaphore are a bit different than traditional
synchronization semaphores

3. Reset the Pseudo-clock semaphore to zero. This insures that all NSYS7
calls block and that the Pseudo-clock semaphore does not grow positive.

4. Return control to the Current Process: Perform a LDST on the saved
exception state (located at the start of the BIOS Data Page [Section
3.4]).

Important Point: It is also possible that there is no Current Process to
return control to. This will be the case when the Scheduler executes the
WAIT instruction instead of dispatching a process for execution. [Section
3.2]



38 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

3.7 Pass Up or Die

The Nucleus will directly handle all NSYS requests (negative numbered)
and device (internal timers and peripheral devices) interrupts. For all other
exceptions (e.g. SYSCALL exceptions positively numbered, Program Trap
and TLB exceptions) the Nucleus will take one of two actions depending on
whether the offending process (i.e. the Current Process) was provided a non-
NULL value for its Support Structure pointer when it was created. [Section
3.5.1]

� If the Current Process’s p supportStruct is NULL, then the exception
should be handled as a NSYS2: the Current Process and all its progeny
are terminated. This is the “die” portion of Pass Up or Die.

� If the Current Process’s p supportStruct is non-NULL. The handling
of the exception is “passed up.”

When an exception occurs, the processor, in concert with the BIOS-Excpt
handler, “passes up” the handling of the exception to the Nucleus: store the
saved exception state at an accessible location known to the Nucleus, and
pass control to a routine specified by the Nucleus, i.e. the Nucleus Exception
handler (fooBar).

� The location, in this case, is fixed; a given location in the BIOS Data
Page. (For Processor 0, this is 0x0FFF.F000) [Section 3.2.2-pops ]

� The address (and stack pointer) for the handler to pass control to was
seeded by the Nucleus, during Nucleus initialization, in the appropriate
location of the Pass Up Vector. [Section 3.1]

When the Nucleus “passes up” exception handling to the Support Level,
it essentially performs the same two tasks: copy the saved exception state
into a location accessible to the Support Level, and pass control to a routine
specified by the Support Level.

There is only one location for the saved exception state and one Pass Up
Vector for the Nucleus. This is because the Nucleus runs in single threaded
mode with interrupts masked; hence with no concurrency. The Nucleus ser-
vices run in a “one at a time” mode, and each invocation running to com-
pletion without interruption. Hence the reusability of the BIOS Data Page
location for the saved exception state and Pass Up Vector. This is also why



3.7. PASS UP OR DIE 39

Nucleus services are so limited: do only what must be done in single threaded
mode, and pass up the handling of all other service requests.

Since the Support Level runs in a fully concurrent mode (interrupts un-
masked), each process needs its own location(s) for their saved exception
states, and addresses to pass control to: The Support Structure.

Furthermore, the concurrency at the Support Level is not only inter-
process, but intra-process as well. The Support Level, while handling a
passed up SYSCALL, can trigger a page fault. For this reason, the Sup-
port Structure contains two locations for saved exception states, and two
addresses for handlers. One state t/PC address pair for:

� TLB exceptions (i.e. page faults): The Support Level TLB exception
handler.

� All other exceptions: The Support Level general exception handler.

One last important detail. The Support Structure’s version of a Pass Up
Vector needs to contain three register values and not two. In addition to the
PC/SP, one also needs a new value for the Status register.

A PC/SP/Status combination is also referred to as a context. Hence the
Support Structure’s version of a Pass Up Vector needs to store two processor
context sets: one for non-TLB exceptions and one for TLB exceptions.

The following two structures are provided:



40 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

/* process context */

typedef struct context t {
/* process context fields */

unsigned int c stackPtr, /* stack pointer value */

c status, /* status reg value */

c pc; /* PC address */

} context t;

typedef struct support t {
int sup asid; /* Process Id (asid) */

state t sup exceptState[2]; /* stored excpt states */

context t sup exceptContext[2]; /* pass up contexts */

... other fields to be added later

} support t;

/* Exceptions related constants */

#define PGFAULTEXCEPT 0

#define GENERALEXCEPT 1

To pass up the handling of an exception:

� Copy the saved exception state from the BIOS Data Page to the correct
sup exceptState field of the Current Process. The Current Process’s
pcb should point to a non-null support t.

� Perform a LDCXT using the fields from the correct sup exceptContext

field of the Current Process. [Section 7.3.4-pops ]

3.7.1 SYSCALL Exceptions Numbered by positive num-
bers

A SYSCALL exception numbered 1 and above occurs when the Current
Process executes the SYSCALL instruction (Cause.ExcCode is set to 8
[Section 3.4]) and the contents of a0 is greater than or equal to 1.

The Nucleus SYSCALL exception handler should perform a standard
Pass Up or Die operation using the GENERALEXCEPT index value.



3.8. ACCUMULATED CPU TIME 41

3.7.2 Program Trap Exception Handling

A Program Trap exception occurs when the Current Process attempts to per-
form some illegal or undefined action. A Program Trap exception is defined
as an exception with Cause.ExcCodes of 4-7, 9-12. [Section 3.4]

The Nucleus Program Trap exception handler should perform a standard
Pass Up or Die operation using the GENERALEXCEPT index value.

3.7.3 TLB Exception Handling

A TLB exception occurs when µMPS3 fails in an attempt to translate a
logical address into its corresponding physical address. A TLB exception is
defined as an exception with Cause.ExcCodes of 1-3. [Section 3.4]

The Nucleus TLB exception handler should perform a standard Pass Up
or Die operation using the PGFAULTEXCEPT index value.

3.8 Accumulated CPU Time

µMPS3 has three clocks: the TOD clock, Interval Timer, and the PLT,
though only the Interval Timer and the PLT can generate interrupts. This
fits nicely with two of three primary timing needs:

� Generate an interrupt to signal the end of Current Process’s time quan-
tum/slice. The PLT is reserved for this purpose.

� Generate Pseudo-clock ticks: Cause an interrupt to occur every 100
milliseconds and V the Pseudo-clock semaphore. The Interval Timer
is reserved for this purpose.

The third timing need is that the Nucleus is tasked with keeping track of
the accumulated CPU time used by each process. [Section 3.5.6]

A field has been defined in the pcb for this purpose (p time). Hence
NSYS6 should return the value in the Current Process’s p time plus the
amount of CPU time used during the current quantum/time slice. While
the TOD clock does not generate interrupts, it is, however, well suited for
keeping track of an interval’s length.

By storing off the TOD clock’s value at both the start and end of an
interval, one can compute the duration of that interval. [Section 4.1.2-pops ]



42 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

The three timer devices are mechanisms for implementing Pandos’s poli-
cies. Timing policy questions that need to be worked out include:

� While the time spent by the Nucleus handling an I/O or Interval Timer
interrupt needs to be measured for Pseudo-clock tick purposes, which
process, if any, should be “charged” with this time? Note: it is possible
for an I/O or Interval Timer interrupt to occur even when there is no
Current Process.

� While the time spent by the Nucleus handling a SYSCALL request
needs to be measured for Pseudo-clock tick and quantum/time slice
purposes, which process, if any, should be “charged” with this time?

It is important to understand the functional differences between the three
µMPS3 timer devices. This includes, but is not limited to understanding that
the TOD clock counts up while the other two timers count down, and that
the behavior of the PLT differs from that of the Interval Timer. The PLT can
be enabled/disabled via the processor Local Timer enable bit (Status.TE).
[Section 4.1.4-pops ]

3.9 Process Termination

When a process is terminated (NSYS2 or the “Die” portion of Pass Up or
Die) there is actually a whole (sub)tree of processes that get terminated.
There are a number of tasks that must be accomplished:

� The root of the sub-tree of terminated processes must be “orphaned”
from its parents; its parent can no longer have this pcb as one of its
progeny (outChild).

� If a terminated process is blocked on a device semaphore, the semaphore
should NOT be adjusted. When the interrupt eventually occurs the
semaphore will get V’ed (and hence incremented) by the interrupt han-
dler.

� The process count and soft-blocked variables need to be adjusted ac-
cordingly.

� Processes (i.e. pcb’s) can’t hide. A pcb is either the Current Pro-
cess (“running”), sitting on the Ready Queue (“ready”), blocked on a



3.10. NUTS AND BOLTS 43

device semaphore (“blocked”), or blocked on a non-device semaphore
(“blocked”).

3.10 Nuts and Bolts

3.10.1 Module Decomposition

One possible module decomposition is as follows:

1. initial.c This module implements main() and exports the Nucleus’s
global variables. (e.g. process count, device semaphores, etc.)

2. interrupts.c This module implements the device/timer interrupt excep-
tion handler. This module will process all the device/timer interrupts,
converting device/timer interrupts into V operations on the appropri-
ate semaphores.

3. exceptions.c This module implements the TLB, Program Trap, and
SYSCALL exception handlers. Furthermore, this module will contain
the provided skeleton TLB-Refill event handler (e.g. uTLB RefillHandler).

4. scheduler.c This module implements the Scheduler and the deadlock
detector.

3.10.2 Accessing the libumps Library

Accessing theCP0 registers and the BIOS-implemented services/instructions
in C (e.g. WAIT, LDST) is via the libumps library. [Chapter 7-pops ]
Simply include the line

#include ‘‘/usr/include/umps3/umps/libumps.h’’

in one’s source files.1

1The file libumps.h is part of the µMPS3 distribution.
/usr/include/umps3/umps/ is the recommended installation location for this file.



44 CHAPTER 3. PANDOSPLUS PHASE 2 - LEVEL 3: THE NUCLEUS

3.11 Testing

There is a provided test file, p2test.c that will “exercise” your code. [Ap-
pendix A]

As with any non-trivial system, you are strongly encouraged to use the
make program to maintain your code. A sample Makefile has been supplied.
See Chapter 10 in the POPS reference for more compilation details.

Once your (seven?) source files (two from Phase 1 and four from Phase 2)
have been correctly compiled, linked together (with appropriate linker script,
crtso.o, and libumps.o), and post-processed with umps3-elf2umps (all per-
formed by the sample Makefile), your code can be tested by launching the
µMPS3 emulator. At a terminal prompt, enter:

umps3

The p2test.c code assumes that the TLB Floor Address has been set
to any value except VM OFF. The value of the TLB Floor Address is a user
configurable value set via the µMPS3 Machine Configuration Panel. [Chapter
12]

The test program reports on its progress by writing messages to TER-
MINAL0. At the conclusion of the test program, either successful or unsuc-
cessful, µMPS3 will display a final message and then enter an infinite loop.
The final message will either be System Halted for successful termination, or
Kernel Panic for unsuccessful termination.


