
React Native

giulio.cinelli@cubbit.io

Aka Another way to save time

Unibo 2022/2023

Want to know
more about

Cubbit?

www.cubbit.io

http://www.youtube.com/watch?v=yEauxAlcduk
http://www.cubbit.io

index.tsx
- What is RN?
- Why RN?
- What do I need to build a RN app?
- How does it work?

What is React Native?

It’s a Framework to build the frontend of Native
Applications

It’s a smart way to write UI elements and logics
only once for multiple clients

It’s a safe place for web (React) developers

It’s made to render native user interfaces

It can be used into an existent Native
application

Why React Native?

The two main players

Apple - iOS Google - iOS

The two main players

Few devices per year Lot of brands, tons of devices

Very strict publication rules on the store Quite permissive Store (but at least 2 to handle)

Cupertino Design (Apple's Human Interface
Guidelines) Material Design

Swift / Objective-c Kotlin / Java

XCode Android Studio

Apple - iOS Google - Android

Views

In Android and iOS
development, a view is the basic
building block of UI: a small
rectangular element on the
screen which can be used to
display text, images, or respond
to user input

Native Components

In Android development, you write
views in Kotlin or Java; in iOS
development, you use Swift or
Objective-C.
With React Native, you can invoke
these views with JavaScript using
React components. At runtime, React
Native creates the corresponding
Android and iOS views for those
components.
Because React Native components are
backed by the same views as Android
and iOS, React Native apps look, feel,
and perform like any other apps.

API Structure

Because React Native uses the
same API structure as React
components, you’ll need to
understand React components
APIs to get started

react.tsx
Fundamentals

● What is React JS?

● Why is it so important?

● What does ReactNative take

from React?

What is ReactJS?

It’s a Javascript Framework for building user web interfaces

Build encapsulated components that manage their own state,

then compose them to make complex UIs.

It is not a simple template engine, it is based on jsx to render

single components. It handles the DOM to render the final

HTML

It builds SPA with a deep focus on rendering single

components, not whole pages

JSX

JSX stands for JavaScript XML.

JSX is an XML/HTML like extension to JavaScript.

Just like HTML, JSX tags can have tag names,
attributes, and children. If an attribute is wrapped in
curly braces, the value is a JavaScript expression.

React elements are immutable. They cannot be
changed.

The only way to change a React element is to
render a new element every time:

Components

Components are independent and
reusable bits of code. They serve
the same purpose as JavaScript
functions, but work in isolation and
return HTML.

Components come in two types,
Class components and Function
components, in this tutorial we will
concentrate on Function
components.

Components Props

Components can be passed as
props, which stands for
properties.

Props are like function
arguments, and you send them
into the component as attributes.

Components in Components

We can refer to components inside
other components

Handling Events

React events are named using camelCase, rather than
lowercase.

With JSX you pass a function as the event handler, rather
than a string.

Your event handlers will be passed instances of
SyntheticEvent, a cross-browser wrapper around the
browser’s native event.

 It has the same interface as the browser’s native event,
including stopPropagation()and preventDefault(), except
that events work identically across all browsers.

Hooks

Hooks allow function components to have access to states

and other React features

● useState

● useContext

● useEffect

You can define your own custom hooks

https://reactjs.org/docs/hooks-reference.html#usestate
https://reactjs.org/docs/hooks-reference.html#useeffect

DOM Renderer

Virtual DOM

The virtual DOM (VDOM) is a programming concept where

an ideal, or “virtual”, representation of a UI is kept in memory

and synced with the “real” DOM by a library such as

ReactDOM. This process is called reconciliation.

This approach enables the declarative API of React: You tell

React what state you want the UI to be in, and it makes sure

the DOM matches that state. This abstracts out the attribute

manipulation, event handling, and manual DOM updating

that you would otherwise have to use to build your app.

https://reactjs.org/docs/reconciliation.html

components.tsx
ReactNative

● What are the differences with
ReactJS?

● Can I reuse ReactJS code for
my app?

Core Components
REACT NATIVE

UI COMPONENT
ANDROID VIEW IOS VIEW WEB ANALOG DESCRIPTION

<View> <ViewGroup> <UIView>
A non-scrollling

<div>

A container that supports layout with
flexbox, style, some touch handling, and
accessibility controls

<Text> <TextView> <UITextView> <p>
Displays, styles, and nests strings of
text and even handles touch events

<Image> <ImageView> <UIImageView> Displays different types of images

<ScrollView> <ScrollView> <UIScrollView> <div>
A generic scrolling container that can
contain multiple components and views

<TextInput> <EditText> <UITextField>
<input

type="text">
Allows the user to enter text

Components

23

React React Native

Style
With React Native, you style your application using
JavaScript.
All of the core components accept a prop named style. The
style names and values usually match how CSS works on
the web, except names are written using camel casing, e.g.
backgroundColor rather than background-color.

The style prop can be a plain old JavaScript object. That's
what we usually use for example code. You can also pass
an array of styles - the last style in the array has
precedence, so you can use this to inherit styles.

As a component grows in complexity, it is often cleaner to
use StyleSheet.create to define several styles in one place

 “Hey, I need you to render a button and
a text. Thanks.”

React React Native

JS

Native

Renderer

JavaScriptCore

When using React Native, you're going to be running your JavaScript code in two environments:

● In most cases, React Native will use JavaScriptCore, the JavaScript engine that powers Safari. Note that on iOS,
JavaScriptCore does not use JIT due to the absence of writable executable memory in iOS apps.

● When using Chrome debugging, all JavaScript code runs within Chrome itself, communicating with native code via
WebSockets. Chrome uses V8 as its JavaScript engine.

The JavaScriptCore framework provides the ability to evaluate JavaScript programs from within Swift, Objective-C, and
C-based apps.

Also Android can run JavascriptCore

http://trac.webkit.org/wiki/JavaScriptCore
https://v8.dev/

Under the hood - Old architecture
The JavaScript Thread. This is the place
where the entire JavaScript code is placed
and compiled. When the app is bundled for
production, the JavaScriptCore runs the
bundle when the user starts the app.

The Native Thread. This is the place where
the native code is executed. This component
handles the user’s interface and ensures
seamless communication with the JS thread
whenever the app needs to update the UI, run
native functions, etc.

The Shadow Thread. It is the place where the layout of your application is
calculated. This cross-platform framework handles this task with the help
of Facebook’s own layout engine called Yoga. It transforms flexbox layouts,
calculates them and sends them to the app’s interface.

Old architecture limitations
The Bridge had some intrinsic limitations:

● It was asynchronous: one layer submitted the data
to the bridge and asynchronously "waited" for the
other layer to process them, even when this was not
really necessary.

● It was single-threaded: JS used to work on a single
thread; therefore, the computation that happened in
that world had to be performed on that single thread.

● It imposed extra overheads: every time one layer
had to use the other one, it had to serialize some
data. The other layer had to deserialize them. The
chosen format was JSON for its simplicity and
human-readability, but despite being lightweight, it
was a cost to pay.

Under the hood - Next generation
Possibility to Use Any JS Engine
The JavaScript thread won’t be bound to the
JavaScriptCore anymore, which will allow
using any high-performance JS engines.

Depreciation of the Bridge
With the introduction of React Native
re-architecture, the Bridge will be gradually
eliminated and substituted with a new component
called the JavaScript Interface (JSI). This element
will also serve as an enabler for a new Fabric and
TurboModules.

JSI - one more advantage brought by JSI is the entire synchronization of JS
thread and native modules. With the help of the JavaScriptInterface, JS will
be able to hold reference to Hot Objects and invoke methods on them. It
will also come with a concept of shared ownership, allowing the native side
to communicate directly with the JS thread.

Fast Refresh
Fast Refresh is a React Native feature that allows you to get near-instant feedback for changes in your React components.
With Fast Refresh enabled, most edits should be visible within a second or two.

● If you edit a module that only exports React component(s), Fast Refresh will update the code only for that module,
and re-render your component. You can edit anything in that file, including styles, rendering logic, event handlers, or
effects.

● If you edit a module with exports that aren't React components, Fast Refresh will re-run both that module, and the
other modules importing it. So if both Button.jsx and Modal.jsx import Theme.js, editing Theme.js will update both
components.

● Finally, if you edit a file that's imported by modules outside of the React tree, Fast Refresh will fall back to doing a
full reload. You might have a file which renders a React component but also exports a value that is imported by a
non-React component. For example, maybe your component also exports a constant, and a non-React utility
module imports it. In that case, consider migrating the constant to a separate file and importing it into both files.
This will re-enable Fast Refresh to work. Other cases can usually be solved in a similar way.

bootstrap.tsx
Start a new project

● Expo CLI

● React Native CLI

Expo CLI

Expo is a set of tools built around React Native

Since the code is written in JavaScript, Expo bundles it
up and serves it from S3.

Every time you publish your app, Expo updates those
assets and then pushes them to your app so you've
always got an up-to-date version.

Expo app is a container ready to receive the updated
JavaScript code as a bundle.

Expo CLI - PRO

● Fast development bootstrap

● 0 knowledge on mobile development

● Manage dependencies installation

● Remote Live Reload

● Remote CI/CD with native code (pay feature)

● Remote upload to Stores (pay feature)

Expo CLI - CONS

● Build is done by Expo, in their cloud

● Native modules not supported

● Expo apps don’t support background code
execution

● Javascript source is hosted in their cloud

● The app is going to be at least around
30MB on iOS and at least around 20MB
on Android because Expo is including all
libraries in the App for now

EXPO
Live demo

React Native CLI
React Native is shipped with a powerful CLI

Metro is the daemon ready to compile and
move javascript code into the Chrome
Debugger in order to enable live reload.

Subsequently, the compilation of the native
code is launched which incorporates the react
native framework

For this configuration it is necessary to set
xcode and android studio as if it were
developed natively

React Native CLI - PRO

● Full power over the development of the
app

● Ability to develop native modules

● Android and iOS native project
accessible

● No Expo dependencies

● Final Bundle size limited to your app (+
RN framework)

React Native CLI - CONS

● Initial configuration requires awareness
of native development

● Dependencies occasionally require
manual configuration

● No remote live reload

Native Modules
Sometimes a React Native app needs to access a native platform API that is not available by default in
JavaScript, for example the native APIs to access Apple or Google Pay.

Maybe you want to reuse some existing Objective-C, Swift, Java or C++ libraries without having to reimplement
it in JavaScript, or write some high performance, multi-threaded code for things like image processing.

The NativeModule system exposes instances of Java/Objective-C/C++ (native) classes to JavaScript (JS) as JS
objects, thereby allowing you to execute arbitrary native code from within JS.

Bindings are a core concept in native modules development. When we want to call Java or Swift native code
from javascript, we need to define common interfaces. Data types also need to be shared.

RN binding JNI

Arguments types

Arguments types

RN CLI
Live demo

Questions?

