
Introduction to
Angular + Ionic + Capacitor

Luca Sciullo
luca.sciullo@unibo.it



Mobile Apps

“A mobile application, also referred to as a mobile app or simply an app, is a computer 
program or software application designed to run on a mobile device such as a phone, 
tablet, or watch”

Wikipedia



Native Apps
A native mobile app is intimately tied to the platform on which it is running. 

● It has the ability to fully integrate with the capabilities of both the hardware and 
the OS on which it resides. 

● It is completely analogous to most PC applications, which are downloaded to a 
desktop or laptop hard drive and completely executed within that machine.

● In order to accomplish this tight integration, the mobile app developer utilizes an 
SDK from the hardware manufacturer directly or via the mobile device’s OS 
vendor.

● Combined with an IDE, a developer is able to code the mobile application logic 
and take advantage of any hardware or OS functionality that is available via the 
exposed APIs

http://www.optimusinfo.com



Hybrid Apps
A hybrid mobile application is developed using both native libraries and web technologies
in an attempt to get the best of both worlds.

● The interface between the separate components is an on-platform, embedded HTML 
rendering engine, which is either developed in-house or acquired from a 3rd-party.

● The native portion of the app can be written as a top to bottom native app, which
communicates to a web-based server backend. This has the same porting issues as a 
purely native app.

● 3rd-party cross-platform development tools exist that use native library containers to 
achieve near-native performance. Such tools bring the benefits of cross-platform
development in both the native and web-based portions of a hybrid mobile app

http://www.optimusinfo.com



Mobile Web Applications - Progressive Web Applications (PWAs)
Web-based mobile apps are developed with the same tools used for mobile website 
development through the use of HTML, CSS style sheets and JavaScript.

● HTML5 provides the ability to create rich UI experiences with support for rich 
media, UI components, geolocation, and offline execution.

● Third-party suppliers of JavaScript toolkits can supply UI components that allow 
web-based apps to mimic native look and feel on the mobile device, such as Dojo 
or jQuery. However, their ability to provide precise native look and feel varies 
across toolkits.

http://www.optimusinfo.com

Example: https://www.gardainformatica.it/blog/sviluppo-software/esempio-progessive-web-app-android-

installa.webp?v=1614264237

https://www.gardainformatica.it/blog/sviluppo-software/esempio-progessive-web-app-android-installa.webp?v=1614264237
https://www.gardainformatica.it/blog/sviluppo-software/esempio-progessive-web-app-android-installa.webp?v=1614264237


Hybrid applications vs PWAs
Hybrid

● Web technologies (HTML, CSS, 
Javascript)

● Run in a browser Web View
● Access device capabilities via plugins
● Wrapped in a native app shell
● Native app

PWA

It is just a regular website that runs in a 
browser with some enhancements and 
gives app-like experience to users by using 
modern web capabilities.

● Installation on a mobile home screen
● Offline usage
● Camera, push notifications
● Background synchronization



Technologies

Native Hybrid Mobile Web
(PWA)



Hybrid-Native vs Hybrid-Web
Hybrid-Native: Native UI, Shared Code

JavaScript code runs and orchestrates native UI controls under the hood, so that your app UI is
running (almost but not completely) natively. It means that the underlying native UI component 
that you would like to use or customize must be supported by the framework in order to use that
component or change it.

Hybrid-Web: Web UI, Shared Components

The UI is built with HTML/CSS/JS, with native functionality being accessed through portable
APIs (or “plugins”) that abstract the underlying platform dependencies. Instead of your entire UI 
depending on the native platform, only certain native device features, like the Camera, are 
platform-dependent.



Technologies: Hybrid-Native vs Hybrid-Web vs PWAs

Hybrid-Native Mobile Web
(PWA)Hybrid-Web



Native, Hybrid or PWA ?



Native, Hybrid or PWA ?

Well, as usual, it depends...



Native, Hybrid or PWA ? - Pros
Native

● Direct access to all 
the mobile device’s 
features

● Highest 
performance 
possible

● Direct access to UI 
components of 
specific platforms

Hybrid

● Easy access to 
mobile device’s 
features

● UX is nearly 
identical to native 
apps

● High performances
● Single codebase, and 

lower development 
costs

PWA

● No fee nor approval 
procedures to 
publish the 
application

● No installation 
required

● Lowest 
development costs

● Single codebase



Native, Hybrid or Mobile Web ? - Cons
Native

● Highest 
Development & 
Maintenance costs

● Multiple codebases
● High Development 

Time
● Limited 

customization

Hybrid

● High Development 
& Maintenance 
costs

● The efficiency and 
the quality of the 
application strongly 
depends on the 
technology used

● Worse 
performances

PWA

● Limited set of 
functionalities

● Worse UX
● The efficiency and 

the quality of the 
application strongly 
depends on the 
technology used

● Worst performances



Angular 2+
Angular is an application design framework and development platform for creating
efficient and sophisticated single-page apps.

Angular 2+ is the evolution of AngularJS. Angular.x, with x > 1, is called Angular 2+.

The current version is the 15.2.1. Angular has a major release every 6 months.



Angular 2+
● It is a Javascript framework used to build client-side applications with a rich UI
● Angular code is written in Typescript, that is then compiled into Javascript
● Angular extends HTML tag through directives and provide data binding and 

dependency injection for reducing the amount of code
● Angular is inspired by the MVC/MVVC Architecture, but it is said to be 

Component-based
○ there are no Controllers or ViewModels in Angular. Instead, there are components, which are made 

up of a Template (like a view), Classes and MetaData (Decorators).

https://stackoverflow.com/questions/36950582/angular-design-pattern-mvc-mvvm-or-mv



Angular 2+: a lot of stuff
● Property binding Events binding
● Directives - Structural directives
● Modules
● Services
● Components
● Pipes
● Router
● Forms
● Animations

AND SO ON!

https://angular.io/docs



Ionic
Ionic is an open source mobile UI toolkit for building high quality, cross-platform 
native and web app experiences.

Ionic offers a library of mobile-optimized UI components, gestures, and tools for 
building fast, highly interactive apps.

Ionic is engineered to integrate seamlessly with all best frontend frameworks, 
including Angular, React, Vue, or even no framework at all with vanilla JavaScript



Ionic
Ionic’s components are written in HTML, CSS, and JavaScript, making it easy to build 
modern, high quality UIs that perform great everywhere.

iOS Android
https://ionicframework.com/docs/components

https://ionicframework.com/docs/components


Capacitor
Capacitor is an open source native runtime for building Web Native apps. It creates cross-
platform iOS, Android, and Progressive Web Apps with JavaScript, HTML, and CSS

Capacitor’s native plugin APIs make it extremely easy to access and invoke common device 
functionality across multiple platforms.

Capacitor is a spiritual successor to Apache Cordova and Adobe PhoneGap, with inspiration 
from other popular cross-platform tools like React Native and Turbolinks, but focused 
entirely on enabling modern web apps to run on all major platforms with ease. Capacitor is 
backward-compatible with many existing Cordova plugins.



Capacitor Plugins



How it works
Capacitor acts as the runtime facilitating communication between the web app and the 
underlying OS.

https://capacitorjs.com/blog/how-capacitor-works

https://capacitorjs.com/blog/how-capacitor-works


Demo time !



Angular: getting started

https://angular.io/guide/setup-local

Install the Angular CLI:

$ npm install -g @angular/cli

Create a new workspace and initial starter app:

$ ng new my-app

Run the application

$ cd my-app

$ ng serve --open

Default port is 4200 -> http://localhost:4200/

https://angular.io/guide/setup-local


Demo app: fake login
The app shows a form with an email and a password field.

● If the values inserted match a predefined combination, then the app shows a list 
of elements.

● Otherwise it shows an error message.

This is a simplified example. For a real login, we would need to use Angular guards, 
reactive forms, routing, http service, etc..



Ionic: getting started

https://ionicframework.com/docs/intro/cli

Install the Ionic CLI:

$ npm install -g @ionic/cli
Create a new workspace and initial starter app:

$ ionic start demo tabs --type=angular --capacitor

Run the application

$ cd demo
$ ionic serve

Default port is 8100 -> http://localhost:8100/

https://ionicframework.com/docs/intro/cli


Demo app: fake login
The app shows a form with an email and a password field.

● If the values inserted match a predefined combination, then the app shows a list 
of elements. From the same page user can open the camera through a button.

● Otherwise it shows an error message.
● See the differences between iOS and Android rendering in the browser
● Run it on Android emulator


	Slide 1: Introduction to Angular + Ionic + Capacitor
	Slide 2: Mobile Apps
	Slide 3: Native Apps
	Slide 4: Hybrid Apps
	Slide 5: Mobile Web Applications - Progressive Web Applications (PWAs)
	Slide 6: Hybrid applications vs PWAs
	Slide 7: Technologies
	Slide 8: Hybrid-Native vs Hybrid-Web
	Slide 9: Technologies: Hybrid-Native vs Hybrid-Web vs PWAs
	Slide 10: Native, Hybrid or PWA ?
	Slide 11: Native, Hybrid or PWA ?
	Slide 12: Native, Hybrid or PWA ? - Pros
	Slide 13: Native, Hybrid or Mobile Web ? - Cons
	Slide 14: Angular 2+
	Slide 15: Angular 2+
	Slide 16: Angular 2+: a lot of stuff
	Slide 17: Ionic
	Slide 18: Ionic
	Slide 19: Capacitor
	Slide 20: Capacitor Plugins
	Slide 21: How it works
	Slide 22: Demo time !
	Slide 23: Angular: getting started
	Slide 24: Demo app: fake login
	Slide 25: Ionic: getting started
	Slide 26: Demo app: fake login

