
Programming with Android:
System Services

Federico Montori
Dipartimento di Informatica: Scienza e Ingegneria

Università di Bologna

 Federico Montori - Programming with Android – System Services 2

System Services

� There is a wide list of services available
AccessibilityManager
AccountManager
ActivityManager
AlarmManager
AppOpsManager
AudioManager
BatteryManager
BluetoothManager
ClipboardManager
ConnectivityManager
DevicePolicyManager
DisplayManager
DownloadManager
DropBoxManager
FingerprintManager
InputMethodManager
InputManager

JobScheduler
KeyguardManager
LauncherApps
LayoutInflater
LocationManager
MediaProjectionManager
MediaRouter
MediaSessionManager
MidiManager
NetworkStatsManager
NfcManager
NotificationManager
NsdManager
PowerManager
PrintManager
RestrictionsManager
SearchManager

SensorManager
StorageManager,
SubscriptionManager
TelecomManager
TelephonyManager
TextServicesManager
TvInputManager
UiModeManager
UsageStatsManager
UsbManager
UserManager
Vibrator
WallpaperService
WifiManager
WifiP2pManager
WindowManager

 Federico Montori - Programming with Android – System Services

 BatteryManager bm = (BatteryManager) getSystemService(Context.BATTERY_SERVICE);

Battery Manager

❖ Android runs on limited capabilities devices
❖ It is crucial to use the battery wisely
❖ The battery service gives us information about the

power of the system
❖ Get it with:

However you don’t handle battery monitoring by calling
directly its functions...

3

 Federico Montori - Programming with Android – System Services

Intent batteryStatus = context.registerReceiver(null,
new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

Battery Manager

❖ The BatteryManager broadcasts a sticky intent (that’s why
the receiver is null) accessed by :

4

❖ From there you extract monitoring data and beyond...
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = (status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL);

int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;
boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;

float batteryPercent = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1) * 100 /
(float)batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

 Federico Montori - Programming with Android – System Services

Battery Manager

❖ And obviously we can be notified whenever special conditions
occur:

5

<receiver android:name=".BatteryLevelReceiver">
 <intent-filter>
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
 <action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
 <action android:name="android.intent.action.BATTERY_LOW"/>
 <action android:name="android.intent.action.BATTERY_OKAY"/>
 </intent-filter>
</receiver>

 Federico Montori - Programming with Android – System Services

Alarm Service

❖ Fires an Intent in the future
❖ Get it with

❖ type is one of:
▪ ELAPSED_REALTIME
▪ ELAPSED_REALTIME_WAKEUP
▪ RTC
▪ RTC_WAKEUP

AlarmManager am = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
am.set(int type, long triggerAtTime, PendingIntent operation);

SystemClock.elapsedRealTime()

System.currentTimeMillis()

Elapsed since sys boot.
Better for time slices

UTC Clock
Better for time of the day

 Federico Montori - Programming with Android – System Services

Alarm Service

● Fire alarmIntent in exactly half an hour from now (otherwise inexact)

Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 14);
alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP,

calendar.getTimeInMillis(), AlarmManager.INTERVAL_DAY, alarmIntent);

alarmMgr.setExact(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime() + AlarmManager.INTERVAL_HALF_HOUR,

alarmIntent);

● Fire alarmIntent every day at 14 starting from today, waking up the device if
sleeping (WAKEUP) and clustering the alarm with others if present (Inexact).

 Federico Montori - Programming with Android – System Services

Alarm Service

● More methods
○ setRepeating(int type, long triggerAtTime, long interval,

PendingIntent operation);
■ Can use INTERVAL_HOUR, INTERVAL_HALF_DAY

○ cancel(PendingIntent operation);
■ Match with filterEquals(Intent anotherIntent);

● [Best Practice warning] Sometimes is useful to set
the alarms again if the device has rebooted

<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

[…]
 <action android:name="android.intent.action.BOOT_COMPLETED"></action>

 Federico Montori - Programming with Android – System Services

WorkManager

WorkManager is an API that makes it easy to schedule deferrable, asynchronous
tasks that are expected to run even if the app exits or the device restarts.

● It uses a mix of
JobScheduler,
AlarmManager and
BroadcastReceiver

● It is NOT a replacement
for scheduling tasks at
exact time, for that you
should use
AlarmManager still.

 Federico Montori - Programming with Android – System Services

WorkManager Includes

● It shall be imported as usual in the build.gradle

dependencies {
 def work_version = "2.5.0"

 // (Java only)
 implementation "androidx.work:work-runtime:$work_version"

 // Kotlin + coroutines
 implementation "androidx.work:work-runtime-ktx:$work_version"

 implementation "androidx.work:work-rxjava2:$work_version"
 implementation "androidx.work:work-gcm:$work_version"
 androidTestImplementation "androidx.work:work-testing:$work_version"
 implementation "androidx.work:work-multiprocess:$work_version"
 }

 Federico Montori - Programming with Android – System Services

WorkManager Create Worker

● This declares what the deferrable task is (in the doWork)
○ It will run on a background thread once enqueued

public class UploadWorker extends Worker {
 public UploadWorker(
 @NonNull Context context,
 @NonNull WorkerParameters params) {
 super(context, params);
 }

 @Override
 public Result doWork() {
 // Do the work here--in this case, upload the images.
 uploadImages();
 // Indicate whether the work finished successfully with the Result
 return Result.success();
 }
}

 Federico Montori - Programming with Android – System Services

WorkManager Create Worker

● Then we should instantiate the object by stating implicitly what kind of job is

WorkRequest uploadWorkRequest =
 new OneTimeWorkRequest.Builder(UploadWorker.class)
 .build();

● Then we need to get the reference to the WorkManager and submit the job

WorkManager
 .getInstance(myContext)
 .enqueue(uploadWorkRequest);

● From now on, the job will be executed on top of the constraints declared while
building the WorkRequest.
○ There are many parameters and constraints (e.g. retries, network types…)
○ https://developer.android.com/topic/libraries/architecture/workmanager/ho

w-to/define-work

https://developer.android.com/topic/libraries/architecture/workmanager/how-to/define-work
https://developer.android.com/topic/libraries/architecture/workmanager/how-to/define-work

 Federico Montori - Programming with Android – System Services

Periodic Work

You can schedule periodic work pretty easily and WorkManager is powerful
enough to set a flexible period.

WorkRequest saveRequest =
 new PeriodicWorkRequest.Builder(SaveImageToFileWorker.class,
 1, TimeUnit.HOURS,
 15, TimeUnit.MINUTES)
 .build();

● In this example the job gets executed every hour with a 15-minutes tolerance

 Federico Montori - Programming with Android – System Services

Monitor and Chain

You can observe changes on your work by using a LiveData

workManager.getWorkInfoByIdLiveData(saveRequest.id)
 .observe(getViewLifecycleOwner(), workInfo -> {
 if (workInfo.getState() != null &&
 workInfo.getState() == WorkInfo.State.SUCCEEDED) {
 // YOUR REACTION HERE
 }
});

You can also chain works
WorkManager.getInstance(myContext)
 // Candidates to run in parallel
 .beginWith(Arrays.asList(plantName1, plantName2, plantName3))
 // Dependent work (only runs after all previous work in chain)
 .then(cache)
 .enqueue();

 Federico Montori - Programming with Android – System Services

Sensor Service

❖ Interaction with sensors
❖ Get it with

❖ Various kind of sensors

– Motion (accelerometer, gyroscope, ...)
– Environment (barometer, thermometer, photometer, ...)
– Position (compass, magnetometer, ...)

SensorManager sm = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 Federico Montori - Programming with Android – System Services

Accelerometer

❖ To measure acceleration

❖ Given with 3-axes values

❖ Useful to inspect
movements

 Federico Montori - Programming with Android – System Services

Gyroscope

❖ To measure orientation

❖ Usually a spinning wheel or
a spinning disk

❖ Gives angular speed

❖ Now more common in smartphones

 Federico Montori - Programming with Android – System Services

Light sensor

❖ Usually a photodiode

❖ When exposed to light, they
create a current

❖ More current, more light

 Federico Montori - Programming with Android – System Services

Proximity sensor

❖ To measure distance from
objects

❖ Useful to understand when the
smartphone is in, for instance, a pocket

❖ Used to switch off screen during calls

 Federico Montori - Programming with Android – System Services

Sensors List

❖ public List<Sensor> getSensorList(int type); (can be Sensor.TYPE_ALL)

Sensor Type (Hardware/Software) Used for
TYPE_ACCELEROMETER Hardware Acceleration along three axes (+ gravity)

TYPE_AMBIENT_TEMPERATURE Hardware Temperature

TYPE_GRAVITY Can be both Motion Detection

TYPE_GYROSCOPE Hardware Rotation

TYPE_LIGHT Hardware Ambient brightness

TYPE_LINEAR_ACCELERATION Can be both Acceleration along three axes (no gravity)

TYPE_MAGNETIC_FIELD Hardware Compass, indoor navigation

TYPE_ORIENTATION Software Obtaining device position

TYPE_PRESSURE Hardware Obtaining the height from sea level

TYPE_PROXIMITY Hardware Setting off the screen

TYPE_RELATIVE_HUMIDITY Hardware Humidity

TYPE_ROTATION_VECTOR Can be both Motion and Rotation detection

 Federico Montori - Programming with Android – System Services

Sensors

● Not all smartphones are created equal

● Some carry a set of sensors some others don't

● Also different vendors offer different sensors with

different capabilities…
○ getResolution()
○ getMaximumRange()
○ getPower()
○ getVendor()
○ getMinDelay()

 Federico Montori - Programming with Android – System Services

How to “use” a Sensor

❖ Each Sensor contains information about the vendor,
type and others

❖ Implement SensorEventListener
▪ onAccuracyChanged(Sensor sensor, int accuracy)
▪ onSensorChanged(SensorEvent event)
▪ registerListener(SensorEventListener listener, Sensor

sensor, int rate)
[do this in the onResume (and the unregisterListener in the onPause)]

• rate is one of
– SENSOR_DELAY_NORMAL
– SENSOR_DELAY_FASTEST (default)

 Federico Montori - Programming with Android – System Services

Requesting sensor updates

Sensor can report updates with different speeds:
- SENSOR_DELAY_FASTEST: as fast as possible
- SENSOR_DELAY_GAME: suitable for games
- SENSOR_DELAY_UI: for interface changes
- SENSOR_DELAY_NORMAL: for all other uses

24

sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
Sensor sensorLight = sm.getDefaultSensor(Sensor.TYPE_LIGHT);
sm.registerListener(this, sensorLight, SensorManager.SENSOR_DELAY_NORMAL);

public void onSensorChanged(SensorEvent event) {
 if (event.sensor.getType() == Sensor.TYPE_LIGHT) {

// doSomething
 } else if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

// doSomething
 }
}

 Federico Montori - Programming with Android – System Services

Virtual Sensor

• In addition to the hardware sensors, there are a
number of possible virtual sensors
• Gravity
• Linear Acceleration
• Orientation
• Rotation

• Readings from hardware sensors are computed to
offer aggregated data

25

 Federico Montori - Programming with Android – System Services

Sensor Challenges

• Bias
• Sensor reading is off by a constant value

• Drift
• Data is shifted without cause

• Settling time
• Initial sensor readings may be inaccurate

• Noise
• Data can’t report a reliable and steady value

• Interference
• From the environment

26

 Federico Montori - Programming with Android – System Services

Detecting User’s activities

• Detecting the user activity is of paramount
importance
• Start vehicle related apps while the user is driving
• Start tracking distances if the user is walking
• Activate fitness apps

• How?
• Reading raw values and use machine learning models
• Exploit Activity Recognition API

• Permission

27

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

 Federico Montori - Programming with Android – System Services

Requesting Activity notifications

28

List<ActivityTransition> transitions = new ArrayList<>();

transitions.add(
 new ActivityTransition.Builder()
 .setActivityType(DetectedActivity.IN_VEHICLE)
 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_ENTER)
 .build());

transitions.add(
 new ActivityTransition.Builder()
 .setActivityType(DetectedActivity.IN_VEHICLE)
 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_EXIT)
 .build());

transitions.add(
 new ActivityTransition.Builder()
 .setActivityType(DetectedActivity.WALKING)
 .setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_EXIT)
 .build());

 Federico Montori - Programming with Android – System Services

Requesting Activity notifications

Build the request

And register it

29

ActivityTransitionRequest request = new ActivityTransitionRequest(transitions);

Task<Void> task =
 ActivityRecognition.getClient(context).requestActivityTransitionUpdates(request, myPendingIntent);

 task.addOnSuccessListener(new OnSuccessListener<Void>() {
 @Override
 public void onSuccess(Void result) { // do something }
 }
);
 task.addOnFailureListener(new OnFailureListener() {
 @Override
 public void onFailure(Exception e) { // do something }
 }
);

 Federico Montori - Programming with Android – System Services

Receiving Activity notifications

• Performed as a Broadcast Receiver

• Notifications are ordered

• Remember to de-register notifications

30

Task<Void> task = ActivityRecognition.getClient(context).removeActivityTransitionUpdates(myPendingIntent);

if (ActivityTransitionResult.hasResult(intent)) {
 ActivityTransitionResult result = ActivityTransitionResult.extractResult(intent);
 for (ActivityTransitionEvent event : result.getTransitionEvents()) {
 // chronological sequence of events....
 }
 }

 Federico Montori - Programming with Android – System Services

Audio Service

❖ Able to
▪ select a stream and control sound
▪ adjust the volume
▪ change ring type
▪ play effects

 Federico Montori - Programming with Android – System Services

Telephony Service

❖ Interacts with calls
❖ Get it with

❖ Ask the device about call information
▪ getCallState()
▪ getDataState()
▪ getDataActivity()
▪ getNetworkType()
▪ isNetworkRoaming()

TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);

 Federico Montori - Programming with Android – System Services

SMS Service

❖ Send text messages
❖ Get it with

❖ To send a message call:
▪ sendTextMessage(String dest, String sc, String text,

PendingIntent sent, PendingIntent delivery);
• sent and delivery: two intents to be fired when the message is

sent and/or delivered

SmsManager sms = SmsManager.getDefault();

 Federico Montori - Programming with Android – System Services

Connectivity Service

❖ Check device network state
❖ Get it with

❖ Check WI-FI, GPRS, LTE
❖ Notify connection changes
❖ Needs

▪ android.permission.ACCESS_NETWORK_STATE
▪ android.permission.CHANGE_NETWORK_STATE

String serId = Context.CONNECTIVITY_SERVICE;
ConnectivityManager cm = (ConnectivityManager) Context.getSystemService(serId);

 Federico Montori - Programming with Android – System Services

Wi-Fi Service

❖ Manages the Wi-Fi connection
❖ Get it with

❖ Check Wi-Fi
▪ getWifiState()

• Returns WIFI_STATE_DISABLED, WIFI_STATE_DISABLING, WIFI_STATE_ENABLED,
WIFI_STATE_ENABLING, WIFI_STATE_UNKNOWN

▪ isWifiEnabled() / setWifiEnabled()
❖ Lists all the configured wifi connections

▪ getConfiguredNetworks()

WifiManager wfm = (WifiManager) getSystemService(Context.WIFI_SERVICE)

 Federico Montori - Programming with Android – System Services

Wi-Fi Service

❖ Check/edit wi-fi connection
▪ addNetwork(WifiConfiguration config)
▪ updateNetwork(WifiConfiguration config)
▪ removeNetwork(int netid)

❖ Scan for wi-fi networks
▪ startScan()

❖ Be notified about wi-fi changes
▪ Broadcast Intent: SCAN_RESULTS_AVAILABLE_ACTION

• Call getScanResults()

