
Programming with Android:
App Guidelines part 1:

Components

Federico Montori
Dipartimento di Informatica: Scienza e Ingegneria

Università di Bologna

 Federico Montori - Programming with Android – Components

Outline

MVVM Design Pattern

ViewModel

LiveData

MVVM vs. MVC

Room

Single Source of Truth

An example with Retrofit

 Federico Montori - Programming with Android – Components

Architectural Components

❖ In time, the development in Android has changed
quickly
– Lack of architectural design patterns
– Different native languages
– Hybrid technologies
– Handling bindings between views and controllers is

tedious.
– A lot of boilerplate code...

 Federico Montori - Programming with Android – Components

Architectural Components

Furthermore, well, you’re on a smartphone, which
means a lot more hassle:
❖ For example, you share a photo in your favorite social networking app

– The app triggers a camera intent. The Android OS then launches a camera app to handle the
request. So you leave the first app...

– The camera app might trigger other intents, like launching the file chooser, which may launch yet
another app.

– Eventually, the user returns to the social networking app and shares the photo.
❖ At any point, the user could be interrupted by a phone call or notification. After acting this, the user

should resume the photo sharing process...
❖ Keep in mind that the OS might kill some processes when needed

Given such condition, we need a solid architectural decoupling that ensures
component are not depending on each other.

 Federico Montori - Programming with Android – Components

Model View ViewModel (MVVM)

In this lesson we
will explore:

● ViewModel
● LiveData
● Room
● Retrofit

This is a good starting point
for many apps but obviously
it changes for other
situations.

 Federico Montori - Programming with Android – Components

Architectural Components

❖ Here we are delving into Android Jetpack
Dependencies.

– “suite of libraries, tools, and guidance to help developers write high-quality apps

easier and following best practices”

– Uses androidx.* stuff

❖ We will use something called “Android Components and we need to

add all of these dependencies”

implementation "androidx.lifecycle:lifecycle-viewmodel:2.2.0"
implementation "androidx.lifecycle:lifecycle-livedata:2.2.0"
implementation "androidx.lifecycle:lifecycle-common-java8:2.2.0"

 Federico Montori - Programming with Android – Components

ViewModel

A ViewModel is a component that stores
UI-related data in a Lifecycle-aware way.
● It helps surviving seamlessly configuration

changes
● If the activity or the Fragment is destroyed

and re-created there is no need for saving
instance state every time (which is instead
suitable only for small data).

● Separates view data ownership from UI
controller logic.
○ One ViewModel per UI controller

 Federico Montori - Programming with Android – Components

Create a ViewModel

To create a ViewModel, first extend the ViewModel helper class:

public class MyViewModel extends ViewModel {
 private List<User> users;
 public List<User> getUsers() {

 // Do an asynchronous operation to fetch users.
 return users;
 }
}

Get the singleton from the Activity:
MyViewModel model = new ViewModelProvider(this).get(MyViewModel.class);
List<User> users = model.getUsers();

 Federico Montori - Programming with Android – Components

Create a ViewModel

ViewModel specifications:
● A ViewModel is scoped to the lifecycle of the object passed to the

ViewModelProvider (this request makes it sort of singleton).
● A ViewModel never references elements of the View, the reference

should be one-way only.
● Multiple Fragments can share the same ViewModel by passing

requireActivity() to the ViewModelProvider.
● You also have application context-aware ViewModel, called

AndroidViewModel (if you need reference to the application):
MyAndroidViewModel model = ViewModelProvider.AndroidViewModelFactory.

getInstance(this.getApplication()).create(MyAndroidViewModel.class);

 Federico Montori - Programming with Android – Components

Observables

LiveData are based on the concept of Observables
● Observables are data classes that notify when changes on the

observed data occur.
○ they wrap existing data types

public final ObservableField<String> name =

new ObservableField<>();

public final ObservableInt age =

new ObservableInt();

public final ObservableArrayList<String> users =

new ObservableArrayList<>();

 Federico Montori - Programming with Android – Components

Life Cycle Awareness

LiveData are also based on the concept of LifeCycle

Awareness
● Let’s leave observables for a second and see what these are

For observables:
○ can easily set/get their values
○ need to subscribe to changes and design a callback function
○ Part of RxJava (not only Android)...
○ Cannot interact with the life cycle

 Federico Montori - Programming with Android – Components

Life Cycle Awareness

You can implement LifeCycle awareness by implementing an

Observer to the LifeCycle:

Useful when the component needs to react to lifecycle changes

public class MyObserver implements LifecycleObserver {
 @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
 public void function1() { … }
 @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
 public void function2() { … }
 }
}
myLifecycleOwner.getLifecycle().addObserver(new MyObserver());

 Federico Montori - Programming with Android – Components

Life Cycle Awareness

The function getLifecycle() can be called by a LifeCycleOwner

● an object implementing the LifeCycleOwner interface, i.e. it has a Lifecycle

(Activities, Services, Fragments...)

● You can use powerful calls such as

lifecycle.getCurrentState().isAtLeast(STARTED))

● You can create a class that implements the LifeCycleOwner interface

 Federico Montori - Programming with Android – Components

LiveData

LiveData are lifecycle-aware observable components that notify
subscribers only when they are in active state (i.e. RESUMED or
STARTED).
● Useful for activities and fragments because they can observe data and not

worry about their state.
● First of all, design your Live Data to contain the actual data (just like the

observer, it is a wrapper.
● MutableLiveData can change (it has a setter), LiveData cannot
● Instantiate them in your ViewModel

private MutableLiveData<String> currentName;

 Federico Montori - Programming with Android – Components

Creating LiveData

LiveData are typically instantiated in your ViewModel, which means
that the observer is located elsewhere (i.e. the Activity). It is typically
good practice to return an immutable or a mutable LiveData to the
class that observes:

public MutableLiveData<String> getCurrentName() {
 if (currentName == null) {
 currentName = new MutableLiveData<String>();
 }
 return currentName; // The observer can modify currentName
 }

public LiveData<String> getCurrentName() {
 if (currentName == null) {
 currentName = new MutableLiveData<String>();
 }
 return currentName; // The observer cannot modify currentName
 }

 Federico Montori - Programming with Android – Components

Observing LiveData

You may want to start observe your LiveData in the Activity
onCreate().
● LiveData delivers updates to active observers when data changes

model = new ViewModelProvider(this).get(NameViewModel.class);

final Observer<String> nameObserver = new Observer<String>() {

@Override

 public void onChanged(@Nullable final String newName) {

 myTextView.setText(newName);

 }

 };

 model.getCurrentName().observe(this, nameObserver);

LifeCycleOwner

onChanged() is called every time currentName changes and as soon as observe is called if there is a value
already.

 Federico Montori - Programming with Android – Components

Changing LiveData

LiveData values are updated by using:

● setValue() if called from the main thread

● postValue() if called from a worker thread

 model.getCurrentName().postValue(“New Name”);

Remember that setValue() and postValue() are only callable against a
MutableLiveData.
● If you want to pass LiveData to a class not in charge of modifying it, then

only pass LiveData type.
● Typically ViewModel updates LiveData, Activity only observes

○ or calls a method in the ViewModel to update the LiveData

 Federico Montori - Programming with Android – Components

Other Components

LiveData and ViewModel are part of a bigger chunk of novelties that

we will not explore. Here are the pointers:

For a tighter coupling between View elements and the UI controller

we can also use:

● Data Binding
○ https://developer.android.com/topic/libraries/data-binding

● View Binding
○ https://developer.android.com/topic/libraries/view-binding

● They both help in interacting declaratively with views (eliminating findViewById).

https://developer.android.com/topic/libraries/data-binding
https://developer.android.com/topic/libraries/view-binding

 Federico Montori - Programming with Android – Components

MVVM and MVC

Pit stop:
why then MVVM is different
from MVC?

Layouts and static data is
the View
Activities and ViewModel
are the Controller
Persistence is the Model

… right?

 Federico Montori - Programming with Android – Components

MVVM and MVC

Key differences are in different separation of concerns.

● View is the Active Part
● Business Logic separated from UI
● ViewModel prepares observable data
● Easier to test components separately.
● Need DataBinding to fully unleash...

● Controller is the Active Part
● Easy to test Model
● Uneasy to test the Controller because is

tied heavily to the API and the View.
● If we change the View, we change the

controller

Model

Data

View

XML

Controller

Activity

Notify

Setup

Retrieve

Model

Data

View

XML
Activity

ViewModel

ViewModel

Notify

Observe

Retrieve

 Federico Montori - Programming with Android – Components

Databases with Room

Let’s talk about the Model
• Room provides an abstraction layer over SQLite

• You should always use Room from now on
• Add it to your APP by adding in build.gradle

21

dependencies {

 def room_version = "2.2.5"

 implementation "androidx.room:room-runtime:$room_version"

 annotationProcessor "androidx.room:room-compiler:$room_version" // optional - Kotlin, RxJava and Guava Extensions and

Coroutines support for Room

 implementation "androidx.room:room-ktx:$room_version"

 implementation "androidx.room:room-rxjava2:$room_version"

 implementation "androidx.room:room-guava:$room_version"

 // Test helpers

 testImplementation "androidx.room:room-testing:$room_version"

}

 Federico Montori - Programming with Android – Components

Room architecture

• Database
• Contains the database holder
• Main access point

• Data Access Objects (DAOs)
• Interface with methods to access

the database

• Entities
• Database tables

22

 Federico Montori - Programming with Android – Components

Room components: Database

It has to be an abstract class extending RoomDatabase

It handles automatically the conversion from a Cursor to
your APP classes

23

@Database(version = 1, entities = {Entity1.class, Entity2.class})
abstract class myDatabase extends RoomDatabase {

abstract public Entity1Dao entity1Dao();
abstract public Entity2Dao entity2Dao();
abstract public TwoEntitiesDao twoEntitiesDao();

}

 Federico Montori - Programming with Android – Components

Room components: Entity

For each Entity, Room creates a database Table
Each field references a column, except for those

marked with @Ignore

24

@Entity
public class Entity1 {
 @PrimaryKey
 public int myId;

 public String firstField;

 public String secondField;
 @Ignore
 String tmp;
}

 Federico Montori - Programming with Android – Components

Room components: Entity

• Entities fields needs to be either public or you have to
provide getters and setters

• Each entity needs at least one @PrimaryKey
• Primary keys can be defined with more than one field

• The autoGenerate property automatically assigns IDs

25

@Entity(primaryKeys = {"firstName", "lastName"})

@PrimaryKey(autoGenerate = true)
private int uid;

 Federico Montori - Programming with Android – Components

Room components: Entity

• Room creates a table with the Entity name
• Change it with

• Same goes for the columns

• Speed up queries with Indices

26

@Entity(tableName = "users")

@ColumnInfo(name = "first_name")
 public String firstName;

@ColumnInfo(name = "last_name")
 public String lastName;

@Entity(indices = {@Index("name"), @Index(value = {”first_name", ”last_name"})})

 Federico Montori - Programming with Android – Components

Room components: Entity

• Defining uniqueness

• Defining relationships

• Nested objects

27

@Entity(indices = {@Index(value = {"first_name", "last_name"}, unique = true)})

@Entity(foreignKeys = @ForeignKey(entity = User.class,
 parentColumns = "id",
 childColumns = "user_id"))

Class Material {
public String name;
public String weight;

}

@Entity
Class myEntity {

…
@Embedded
public Material objectMaterial;

}

 Federico Montori - Programming with Android – Components

Room components: Relationships

• Defining relations in a more complex way

28

public class Entity1AndEntity2 {
 @Embedded public Entity1 e1;
 @Relation(
 parentColumn = "id",
 entityColumn = "user_id"
)
 public Entity2 e2;
}

• Same as ForeignKey, but lets you make atomic queries (will see how)
• If many-to-many relationship, then specify two one-to-many relations

If it’s one-to-many then you need to put
a list of Entity2 here instead of only
one.

 Federico Montori - Programming with Android – Components

Room components: DAO

• You need DAOs to access data
• A DAO can be either an interface or an abstract class
• Room creates DAO implementations at compile time

• Syntax

• @QueryType can be:
• @Insert, @Update, @Delete, @Query

29

@Dao
public interface MyDao {
 @QueryType(params..)
 public void method(method parameters);
}

 Federico Montori - Programming with Android – Components

Room components: DAO

• A DAO can be either an interface or an abstract class

• If Abstract class, it takes the DB as input in the constructor.

• DO NOT perform DAO operations in the main thread,

this is btw forbidden unless you specify it

• Typically use Worker Threads

• DO NOT implement it

30

 Federico Montori - Programming with Android – Components

DAO: Query examples

• @Insert

• @Update

• @Delete

• @Query

• @Query + parameters

31

@Insert(onConflict = OnConflictStrategy.REPLACE)
public void insertUsers(User... users);

@Insert
public void insertBothUsers(User user1, User user2);

@Insert
public void insertUsersAndFriends(User user, List<User> friends);

@Update
public void updateUsers(User... users);

@Delete
public void deleteUsers(User... users);

@Query("SELECT * FROM user")
public User[] loadAllUsers();

@Query("SELECT * FROM user WHERE age > :minAge")
public User[] loadAllUsersOlderThan(int minAge);

 Federico Montori - Programming with Android – Components

Room components: DAO

● Query on multiple tables:

●

●

Query a relation

Filters only the object of Entity1 that have a respective on Entity2. The @Transaction ensures that
this is atomic as it would be 2 queries.

32

@Dao
public interface MyDao {
 @Query("SELECT * FROM book " + "INNER JOIN loan ON loan.book_id = book.id " + "INNER JOIN user ON user.id =

loan.user_id " + "WHERE user.name LIKE :userName")
 public List<Book> findBooksBorrowedByNameSync(String userName);
}

@Transaction
@Query("SELECT * FROM Entity1")
public List<Entity1AndEntity2> getRelations();

 Federico Montori - Programming with Android – Components

Room: migrating databases

• Updating APP’s features may require updating the
database
• You add a UI field and need to add a DB field
• You change the type of a field
• You don’t need anymore a field

• Room handles it providing the Migration environment
• Remember:

33

@Database(version = 1, entities = {Entity1.class, Entity2.class})
abstract class myDatabase extends RoomDatabase {
…
}

 Federico Montori - Programming with Android – Components

Room: migrating databases

• Each Migration class defines a startVersion and
endVersion
• At runtime, Room runs each migrate method in order

34

Room.databaseBuilder(getApplicationContext(), MyDb.class, "database-name")
 .addMigrations(MIGRATION_1_2, MIGRATION_2_3).build();

static final Migration MIGRATION_1_2 = new Migration(1, 2) {
 @Override
 public void migrate(SupportSQLiteDatabase database) {
 database.execSQL("CREATE TABLE `Fruit` (`id` INTEGER, "
 + "`name` TEXT, PRIMARY KEY(`id`))");
 }
};

static final Migration MIGRATION_2_3 = new Migration(2, 3) {
 @Override
 public void migrate(SupportSQLiteDatabase database) {
 database.execSQL("ALTER TABLE Book "
 + " ADD COLUMN pub_year INTEGER");
 }
};

 Federico Montori - Programming with Android – Components

To build a Content Provider with
Room

❖ Define your resources (let’s say it’s a db)
❖ Implement the CRUD operations

public class ExampleProvider extends ContentProvider {
 private AppDatabase appDatabase;

private UserDao userDao;
private static final String DBNAME = "mydb";
public boolean onCreate() {

appDatabase = Room.databaseBuilder(getContext(), AppDatabase.class, DBNAME).build();
userDao = appDatabase.getUserDao();
return true; }

 public Cursor insert (Uri uri, ContentValues values) {
// Here do your ops against the DB….

}

 Federico Montori - Programming with Android – Components

Room and LiveData

❖ The Room persistence library supports observable queries, which return
LiveData objects.

❖ Observable queries are written as part of a DAO
❖ Do not need to explicitly run them into a separate Thread (it is done by

default).
❖ Changes in the Database are immediately notified to the LiveData

@Query("SELECT * FROM user")
public LiveData<List<User>> loadAllUsersObservable();

// Meanwhile in your ViewModel (or Repository)
private LiveData<List<User>> myList;
myList = userDao.loadAllUsersObservable();

https://developer.android.com/reference/androidx/lifecycle/LiveData

 Federico Montori - Programming with Android – Components

SSOT model

37

ViewModel

Remote

DAO

SSOT

Only asks to
SSOT for the
data.

Fetches/update
s data from/to
Remote, same
with DAO

Fresh Data

DAO is needed
to keep data
locally

 Federico Montori - Programming with Android – Components

SSOT model and Repository

38

❖ SSOT model ensures that the request for the data is ALWAYS made
against a single source

○ With Room and LiveData, your single source may be the Room
Database

❖ IDEA: when requesting remote data, ALWAYS save it to your database
and provide the LiveData returned by the database, so the ViewModel
does not know who updated it.

❖ You may need an intermediate Repository class that handles all the
different calls to data sources.

 Federico Montori - Programming with Android – Components

SSOT model and Repository

39

❖ BASIC idea (you can implement with whatever HTTP client you want)

public LiveData<List<User>> loadAllUsersSSOT() {
 RequestQueue queue = Volley.newRequestQueue(this);

StringRequest stringRequest = new StringRequest(Request.Method.GET,
“http://fakedata.io/getUsers”,
new Response.Listener<String>() {
 @Override
 public void onResponse(String response) { INSERT USERS INTO LOCAL DATABASE }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) { // do nothing }
});
queue.add(stringRequest);

 return loadAllUsersObservable;
 }

 Federico Montori - Programming with Android – Components

Retrofit

40

❖ Retrofit is a type-safe HTTP client for Java (yet another one)

○ full doc https://square.github.io/retrofit/

❖ It translates automatically XML and JSON objects into POJO (Plain-Old
Java Objects)

❖ It is very similar to Room, indeed it can use the same Entities

❖ Here we will just see some basic functionalities, you can then explore
further...

❖ Import the necessary dependencies (for JSON in this example):

implementation 'com.squareup.retrofit2:retrofit:2.3.0'
implementation 'com.squareup.retrofit2:converter-gson:2.3.0'

https://square.github.io/retrofit/

 Federico Montori - Programming with Android – Components

Retrofit entities

41

❖ Just design a normal data class with setters and getters

○ Use the SerializedName to specify what name it has in the
JSON/XML data frame.

public class RetroPhoto {
 @SerializedName("albumId")
 private Integer albumId;
 @SerializedName("id")
 private Integer id;
 public RetroPhoto(Integer albumId, Integer id) {
 this.albumId = albumId;
 this.id = id;
 }
//Setters and getters here…
}

 Federico Montori - Programming with Android – Components

Retrofit unique client

42

❖ Then set up the Retrofit client

○ Better to do it in a singleton-like fashion (this one translates JSON)

public class RetrofitClientInstance {
 private static Retrofit retrofit;
 private static final String BASE_URL = "https://jsonplaceholder.typicode.com";
 public static Retrofit getRetrofitInstance() {
 if (retrofit == null) {
 retrofit = new retrofit2.Retrofit.Builder().baseUrl(BASE_URL).addConverterFactory(GsonConverterFactory.create())
 .build();
 }
 return retrofit;
 }
}

 Federico Montori - Programming with Android – Components

Retrofit Interfaces

43

❖ Then, just like with the DAOs, create an interface for each remote call

○ Just like for the DAOs, they will be automatically implemented for
you...

public interface GetDataService {
 @GET("/photos")
 Call<List<RetroPhoto>> getAllPhotos();
}

❖ This will return a Call object, an instance of an interaction with the
remote server. The call needs to be effectively issued (asynchronously
maybe) in order to be effective...

 Federico Montori - Programming with Android – Components

Retrofit Calls

44

❖ Just like with other HTTP clients, such as Volley, enqueue the call:

GetDataService service = RetrofitClientInstance.getRetrofitInstance().create(GetDataService.class);
 Call<List<RetroPhoto>> call = service.getAllPhotos();
 call.enqueue(new Callback<List<RetroPhoto>>() {
 @Override
 public void onResponse(Call<List<RetroPhoto>> call, Response<List<RetroPhoto>> response) {
 myList = Response.body(); // In ssot here we should also update the db...
 }
 @Override
 public void onFailure(Call<List<RetroPhoto>> call, Throwable t) {

// Handle Errors...
 }
 });

❖ This is basically it, with the advantage that retrofit Entities could also be Room entities

○ It does not have to be like it always, it really depends...

 Federico Montori - Programming with Android – Components

Firebase

45

❖ Firebase is a Google app development platform that gives you an
easy-to use and reactive backend for your app.

○ Realtime Database:

The original database, a simple JSON tree, supporting easy queries
and an easier startup.

Made for performance, low latency, few data

○ Cloud Firestore, JSON-like documents organized into collections,
supporting more advanced queries and a lot more scalability.

IN BOTH CASES YOU CAN PERFORM QUERIES AND OBSERVE THEM
AS THE DATABASE IS REACTIVE

 Federico Montori - Programming with Android – Components

Firebase Console

 Federico Montori - Programming with Android – Components

Example: Firebase calls

47

❖ Here we can see how the result of the Firebase query gets passed to a
LiveData, so we have two nested listeners:

FirebaseDatabase mDatabase = FirebaseDatabase.getInstance(“https://wp4demo-default-rtdb.firebaseio.com”);
MutableLiveData<TemperatureDataPoint> tempPoint = new MutableLiveData<>();
 mDatabase.getReference(“Temperature”)
 .addChildEventListener(new ChildEventListener() {
 @Override
 public void onChildAdded(@NonNull DataSnapshot snapshot,
 @Nullable String previousChildName) {
 tempPoint.postValue(snapshot.getValue(TemperatureDataPoint.class));
 }

[...]
});

❖ Here I am just interested in data when it gets added, but I can also use a generic call
like onDataChanged()

