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Architectural Components

❖ In time, the development in Android has changed 
quickly
– Lack of architectural design patterns
– Different native languages
– Hybrid technologies
– Handling bindings between views and controllers is 

tedious.
– A lot of boilerplate code...
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Architectural Components

Furthermore, well, you’re on a smartphone, which 
means a lot more hassle:
❖ For example, you share a photo in your favorite social networking app

– The app triggers a camera intent. The Android OS then launches a camera app to handle the 
request. So you leave the first app...

– The camera app might trigger other intents, like launching the file chooser, which may launch yet 
another app.

– Eventually, the user returns to the social networking app and shares the photo.
❖ At any point, the user could be interrupted by a phone call or notification. After acting this, the user 

should resume the photo sharing process...
❖ Keep in mind that the OS might kill some processes when needed

Given such condition, we need a solid architectural decoupling that ensures 
component are not depending on each other.
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Model View ViewModel (MVVM)

In this lesson we 
will explore:

● ViewModel
● LiveData
● Room
● Retrofit

This is a good starting point 
for many apps but obviously 
it changes for other 
situations.
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Architectural Components

❖ Here we are delving into Android Jetpack 
Dependencies.

– “suite of libraries, tools, and guidance to help developers write high-quality apps 

easier and following best practices”

– Uses androidx.* stuff

❖ We will use something called “Android Components and we need to 

add all of these dependencies”

implementation "androidx.lifecycle:lifecycle-viewmodel:2.2.0"
implementation "androidx.lifecycle:lifecycle-livedata:2.2.0"
implementation "androidx.lifecycle:lifecycle-common-java8:2.2.0"
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ViewModel

A ViewModel is a component that stores 
UI-related data in a Lifecycle-aware way.
● It helps surviving seamlessly configuration 

changes
● If the activity or the Fragment is destroyed 

and re-created there is no need for saving 
instance state every time (which is instead 
suitable only for small data).

● Separates view data ownership from UI 
controller logic.
○ One ViewModel per UI controller
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Create a ViewModel

To create a ViewModel, first extend the ViewModel helper class:

public class MyViewModel extends ViewModel {
    private List<User> users;
    public List<User> getUsers() {

  // Do an asynchronous operation to fetch users.
        return users;
    }
}

Get the singleton from the Activity:
MyViewModel model = new ViewModelProvider(this).get(MyViewModel.class);
List<User> users = model.getUsers();
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Create a ViewModel

ViewModel specifications:
● A ViewModel is scoped to the lifecycle of the object passed to the 

ViewModelProvider (this request makes it sort of singleton).
● A ViewModel never references elements of the View, the reference 

should be one-way only.
● Multiple Fragments can share the same ViewModel by passing 

requireActivity() to the ViewModelProvider.
● You also have application context-aware ViewModel, called 

AndroidViewModel (if you need reference to the application):
MyAndroidViewModel model = ViewModelProvider.AndroidViewModelFactory.

getInstance(this.getApplication()).create(MyAndroidViewModel.class);
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Observables

LiveData are based on the concept of Observables
● Observables are data classes that notify when changes on the 

observed data occur.
○ they wrap existing data types

public final ObservableField<String> name = 

new ObservableField<>();

public final ObservableInt age = 

new ObservableInt();

public final ObservableArrayList<String> users =

new ObservableArrayList<>();
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Life Cycle Awareness

LiveData are also based on the concept of LifeCycle 

Awareness
● Let’s leave observables for a second and see what these are

For observables:
○ can easily set/get their values
○ need to subscribe to changes and design a callback function
○ Part of RxJava (not only Android)...
○ Cannot interact with the life cycle
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Life Cycle Awareness

You can implement LifeCycle awareness by implementing an 

Observer to the LifeCycle:

Useful when the component needs to react to lifecycle changes

public class MyObserver implements LifecycleObserver {
    @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
    public void function1() { … }
    @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
    public void function2() { … }
    }
}
myLifecycleOwner.getLifecycle().addObserver(new MyObserver());
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Life Cycle Awareness

The function getLifecycle() can be called by a LifeCycleOwner

● an object implementing the LifeCycleOwner interface, i.e. it has a Lifecycle 

(Activities, Services, Fragments...)

● You can use powerful calls such as 

lifecycle.getCurrentState().isAtLeast(STARTED))

● You can create a class that implements the LifeCycleOwner interface
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LiveData

LiveData are lifecycle-aware observable components that notify 
subscribers only when they are in active state (i.e. RESUMED or 
STARTED).
● Useful for activities and fragments because they can observe data and not 

worry about their state.
● First of all, design your Live Data to contain the actual data (just like the 

observer, it is a wrapper.
● MutableLiveData can change (it has a setter), LiveData cannot
● Instantiate them in your ViewModel

private MutableLiveData<String> currentName;
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Creating LiveData

LiveData are typically instantiated in your ViewModel, which means 
that the observer is located elsewhere (i.e. the Activity). It is typically 
good practice to return an immutable or a mutable LiveData to the 
class that observes:

public MutableLiveData<String> getCurrentName() {
        if (currentName == null) {
            currentName = new MutableLiveData<String>();
        }
        return currentName; // The observer can modify currentName
    }

public LiveData<String> getCurrentName() {
        if (currentName == null) {
            currentName = new MutableLiveData<String>();
        }
        return currentName; // The observer cannot modify currentName
    }
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Observing LiveData

You may want to start observe your LiveData in the Activity 
onCreate().
● LiveData delivers updates to active observers when data changes

model = new ViewModelProvider(this).get(NameViewModel.class);

final Observer<String> nameObserver = new Observer<String>() {

@Override

    public void onChanged(@Nullable final String newName) {

    myTextView.setText(newName);

    }

    };

    model.getCurrentName().observe(this, nameObserver);

LifeCycleOwner

onChanged() is called every time currentName changes and as soon as observe is called if there is a value 
already. 
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Changing LiveData

LiveData values are updated by using:

● setValue() if called from the main thread

● postValue() if called from a worker thread

    model.getCurrentName().postValue(“New Name”);

Remember that setValue() and postValue() are only callable against a 
MutableLiveData.
● If you want to pass LiveData to a class not in charge of modifying it, then 

only pass LiveData type.
● Typically ViewModel updates LiveData, Activity only observes

○ or calls a method in the ViewModel to update the LiveData
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Other Components

LiveData and ViewModel are part of a bigger chunk of novelties that 

we will not explore. Here are the pointers:

For a tighter coupling between View elements and the UI controller 

we can also use:

● Data Binding
○ https://developer.android.com/topic/libraries/data-binding 

● View Binding
○ https://developer.android.com/topic/libraries/view-binding 

● They both help in interacting declaratively with views (eliminating findViewById).

https://developer.android.com/topic/libraries/data-binding
https://developer.android.com/topic/libraries/view-binding
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MVVM and MVC

Pit stop: 
why then MVVM is different 
from MVC?

Layouts and static data is 
the View
Activities and ViewModel 
are the Controller
Persistence is the Model

… right?
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MVVM and MVC

Key differences are in different separation of concerns.

● View is the Active Part
● Business Logic separated from UI
● ViewModel prepares observable data
● Easier to test components separately.
● Need DataBinding to fully unleash...

● Controller is the Active Part
● Easy to test Model
● Uneasy to test the Controller because is 

tied heavily to the API and the View.
● If we change the View, we change the 

controller
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Databases with Room

Let’s talk about the Model
• Room provides an abstraction layer over SQLite

• You should always use Room from now on
• Add it to your APP by adding in build.gradle

21

dependencies {

  def room_version = "2.2.5"

  implementation "androidx.room:room-runtime:$room_version"

  annotationProcessor "androidx.room:room-compiler:$room_version" // optional - Kotlin, RxJava and Guava Extensions and 

Coroutines support for Room

  implementation "androidx.room:room-ktx:$room_version"

  implementation "androidx.room:room-rxjava2:$room_version"

  implementation "androidx.room:room-guava:$room_version"

  // Test helpers

  testImplementation "androidx.room:room-testing:$room_version"

}
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Room architecture

• Database
• Contains the database holder 
• Main access point

• Data Access Objects (DAOs)
• Interface with methods to access 

the database

• Entities
• Database tables

22
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Room components: Database

It has to be an abstract class extending RoomDatabase

It handles automatically the conversion from a Cursor to 
your APP classes

23

@Database(version = 1, entities = {Entity1.class, Entity2.class})
abstract class myDatabase extends RoomDatabase { 

abstract public Entity1Dao entity1Dao(); 
abstract public Entity2Dao entity2Dao(); 
abstract public TwoEntitiesDao twoEntitiesDao(); 

}
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Room components: Entity

For each Entity, Room creates a database Table
Each field references a column, except for those 

marked with @Ignore

24

@Entity
public class Entity1 {
    @PrimaryKey
    public int myId;
    
    public String firstField;

    public String secondField;
    @Ignore
    String tmp;
}
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Room components: Entity

• Entities fields needs to be either public or you have to 
provide getters and setters

• Each entity needs at least one @PrimaryKey
• Primary keys can be defined with more than one field

• The autoGenerate property automatically assigns IDs

25

@Entity(primaryKeys = {"firstName", "lastName"})

@PrimaryKey(autoGenerate = true)
private int uid;
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Room components: Entity

• Room creates a table with the Entity name
• Change it with

• Same goes for the columns

• Speed up queries with Indices

26

@Entity(tableName = "users")

@ColumnInfo(name = "first_name")
    public String firstName;

@ColumnInfo(name = "last_name")
    public String lastName;

@Entity(indices = {@Index("name"), @Index(value = {”first_name", ”last_name"})})
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Room components: Entity

• Defining uniqueness

• Defining relationships

• Nested objects

27

@Entity(indices = {@Index(value = {"first_name", "last_name"}, unique = true)})

@Entity(foreignKeys = @ForeignKey(entity = User.class,
                                  parentColumns = "id",
                                  childColumns = "user_id"))

Class Material {
public String name;
public String weight;

}

@Entity
Class myEntity {

…
@Embedded
public Material objectMaterial;

}
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Room components: Relationships

• Defining relations in a more complex way

28

public class Entity1AndEntity2 {
    @Embedded public Entity1 e1;
    @Relation(
         parentColumn = "id",
         entityColumn = "user_id"
    )
    public Entity2 e2;
}

• Same as ForeignKey, but lets you make atomic queries (will see how)
• If many-to-many relationship, then specify two one-to-many relations

If it’s one-to-many then you need to put 
a list of Entity2 here instead of only 
one.
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Room components: DAO

• You need DAOs to access data
• A DAO can be either an interface or an abstract class
• Room creates DAO implementations at compile time

• Syntax

• @QueryType can be: 
• @Insert, @Update, @Delete, @Query

29

@Dao
public interface MyDao {
    @QueryType(params..)
    public void method(method parameters);
}
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Room components: DAO

• A DAO can be either an interface or an abstract class

• If Abstract class, it takes the DB as input in the constructor.

• DO NOT perform DAO operations in the main thread, 

this is btw forbidden unless you specify it

• Typically use Worker Threads

• DO NOT implement it

30
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DAO: Query examples

• @Insert

• @Update

• @Delete

• @Query

• @Query + parameters

31

@Insert(onConflict = OnConflictStrategy.REPLACE)
public void insertUsers(User... users);

@Insert
public void insertBothUsers(User user1, User user2);

@Insert
public void insertUsersAndFriends(User user, List<User> friends);

@Update
public void updateUsers(User... users);

@Delete
public void deleteUsers(User... users);

@Query("SELECT * FROM user")
public User[] loadAllUsers();

@Query("SELECT * FROM user WHERE age > :minAge")
public User[] loadAllUsersOlderThan(int minAge);
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Room components: DAO

● Query on multiple tables:

●

●

Query a relation

Filters only the object of Entity1 that have a respective on Entity2. The @Transaction ensures that 
this is atomic as it would be 2 queries.

32

@Dao
public interface MyDao {
    @Query("SELECT * FROM book " + "INNER JOIN loan ON loan.book_id = book.id " + "INNER JOIN user ON user.id = 

loan.user_id " + "WHERE user.name LIKE :userName")
   public List<Book> findBooksBorrowedByNameSync(String userName);
}

@Transaction
@Query("SELECT * FROM Entity1")
public List<Entity1AndEntity2> getRelations();
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Room: migrating databases

• Updating APP’s features may require updating the 
database
• You add a UI field and need to add a DB field
• You change the type of a field
• You don’t need anymore a field

• Room handles it providing the Migration environment
• Remember:

33

@Database(version = 1, entities = {Entity1.class, Entity2.class})
abstract class myDatabase extends RoomDatabase { 
…
}
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Room: migrating databases

• Each Migration class defines a startVersion and 
endVersion
• At runtime, Room runs each migrate method in order

34

Room.databaseBuilder(getApplicationContext(), MyDb.class, "database-name")
        .addMigrations(MIGRATION_1_2, MIGRATION_2_3).build();

static final Migration MIGRATION_1_2 = new Migration(1, 2) {
    @Override
    public void migrate(SupportSQLiteDatabase database) {
        database.execSQL("CREATE TABLE `Fruit` (`id` INTEGER, "
                + "`name` TEXT, PRIMARY KEY(`id`))");
    }
};

static final Migration MIGRATION_2_3 = new Migration(2, 3) {
    @Override
    public void migrate(SupportSQLiteDatabase database) {
        database.execSQL("ALTER TABLE Book "
                + " ADD COLUMN pub_year INTEGER");
    }
};
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To build a Content Provider with 
Room

❖ Define your resources (let’s say it’s a db)
❖ Implement the CRUD operations

public class ExampleProvider extends ContentProvider {
       private AppDatabase appDatabase;

private UserDao userDao;
private static final String DBNAME = "mydb";
public boolean onCreate() {

appDatabase = Room.databaseBuilder(getContext(), AppDatabase.class, DBNAME).build();
userDao = appDatabase.getUserDao();
return true; }

       public Cursor insert ( Uri uri, ContentValues values) {
// Here do your ops against the DB….

}
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Room and LiveData

❖ The Room persistence library supports observable queries, which return 
LiveData objects. 

❖ Observable queries are written as part of a DAO
❖ Do not need to explicitly run them into a separate Thread (it is done by 

default). 
❖ Changes in the Database are immediately notified to the LiveData

@Query("SELECT * FROM user")
public LiveData<List<User>> loadAllUsersObservable();

// Meanwhile in your ViewModel (or Repository)
private LiveData<List<User>> myList;
myList = userDao.loadAllUsersObservable();

https://developer.android.com/reference/androidx/lifecycle/LiveData
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SSOT model

37

ViewModel

Remote

DAO

SSOT

Only asks to 
SSOT for the 
data.

Fetches/update
s data from/to 
Remote, same 
with DAO

Fresh Data

DAO is needed 
to keep data 
locally
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SSOT model and Repository

38

❖ SSOT model ensures that the request for the data is ALWAYS made 
against a single source

○ With Room and LiveData, your single source may be the Room 
Database

❖ IDEA: when requesting remote data, ALWAYS save it to your database 
and provide the LiveData returned by the database, so the ViewModel 
does not know who updated it.

❖ You may need an intermediate Repository class that handles all the 
different calls to data sources. 
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SSOT model and Repository

39

❖ BASIC idea (you can implement with whatever HTTP client you want)

public LiveData<List<User>> loadAllUsersSSOT() {
    RequestQueue queue = Volley.newRequestQueue(this);

StringRequest stringRequest = new StringRequest(Request.Method.GET, 
“http://fakedata.io/getUsers”, 
new Response.Listener<String>() {
      @Override
             public void onResponse(String response) {  INSERT USERS INTO LOCAL DATABASE   }
       }, new Response.ErrorListener() {
             @Override
             public void onErrorResponse(VolleyError error) {  // do nothing   }
});
queue.add(stringRequest);

       return loadAllUsersObservable;
   }
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Retrofit

40

❖ Retrofit is a type-safe HTTP client for Java (yet another one)

○ full doc https://square.github.io/retrofit/ 

❖ It translates automatically XML and JSON objects into POJO (Plain-Old 
Java Objects)

❖ It is very similar to Room, indeed it can use the same Entities

❖ Here we will just see some basic functionalities, you can then explore 
further...

❖ Import the necessary dependencies (for JSON in this example):

implementation 'com.squareup.retrofit2:retrofit:2.3.0'
implementation 'com.squareup.retrofit2:converter-gson:2.3.0'

https://square.github.io/retrofit/


 Federico Montori - Programming with Android – Components

Retrofit entities

41

❖ Just design a normal data class with setters and getters

○ Use the SerializedName to specify what name it has in the 
JSON/XML data frame.

public class RetroPhoto {
   @SerializedName("albumId")
   private Integer albumId;
   @SerializedName("id")
   private Integer id;
   public RetroPhoto(Integer albumId, Integer id) {
       this.albumId = albumId;
       this.id = id;
   }
//Setters and getters here…
}
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Retrofit unique client

42

❖ Then set up the Retrofit client

○ Better to do it in a singleton-like fashion (this one translates JSON) 

public class RetrofitClientInstance {
   private static Retrofit retrofit;
   private static final String BASE_URL = "https://jsonplaceholder.typicode.com";
   public static Retrofit getRetrofitInstance() {
       if (retrofit == null) {
           retrofit = new retrofit2.Retrofit.Builder().baseUrl(BASE_URL).addConverterFactory(GsonConverterFactory.create())
                   .build();
       }
       return retrofit;
   }
}
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Retrofit Interfaces

43

❖ Then, just like with the DAOs, create an interface for each remote call

○ Just like for the DAOs, they will be automatically implemented for 
you...

public interface GetDataService {
   @GET("/photos")
   Call<List<RetroPhoto>> getAllPhotos();
}

❖ This will return a Call object, an instance of an interaction with the 
remote server. The call needs to be effectively issued (asynchronously 
maybe) in order to be effective...
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Retrofit Calls

44

❖ Just like with other HTTP clients, such as Volley, enqueue the call:

GetDataService service = RetrofitClientInstance.getRetrofitInstance().create(GetDataService.class);
       Call<List<RetroPhoto>> call = service.getAllPhotos();
       call.enqueue(new Callback<List<RetroPhoto>>() {
           @Override
           public void onResponse(Call<List<RetroPhoto>> call, Response<List<RetroPhoto>> response) {
               myList = Response.body(); // In ssot here we should also update the db...
           }
           @Override
           public void onFailure(Call<List<RetroPhoto>> call, Throwable t) {

// Handle Errors...
           }
       });

❖ This is basically it, with the advantage that retrofit Entities could also be Room entities

○ It does not have to be like it always, it really depends...



 Federico Montori - Programming with Android – Components

Firebase 

45

❖ Firebase is a Google app development platform that gives you an 
easy-to use and reactive backend for your app.

○ Realtime Database:

The original database, a simple JSON tree, supporting easy queries 
and an easier startup. 

Made for performance, low latency, few data

○ Cloud Firestore, JSON-like documents organized into collections, 
supporting more advanced queries and a lot more scalability. 

IN BOTH CASES YOU CAN PERFORM QUERIES AND OBSERVE THEM 
AS THE DATABASE IS REACTIVE
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Firebase Console
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Example: Firebase calls

47

❖ Here we can see how the result of the Firebase query gets passed to a 
LiveData, so we have two nested listeners:

FirebaseDatabase mDatabase = FirebaseDatabase.getInstance(“https://wp4demo-default-rtdb.firebaseio.com”);
MutableLiveData<TemperatureDataPoint> tempPoint = new MutableLiveData<>();
            mDatabase.getReference(“Temperature”)
                    .addChildEventListener(new ChildEventListener() {
                        @Override
                        public void onChildAdded(@NonNull DataSnapshot snapshot,
                                                 @Nullable String previousChildName) {
                            tempPoint.postValue(snapshot.getValue(TemperatureDataPoint.class));
                        }

[...]
});

❖ Here I am just interested in data when it gets added, but I can also use a generic call 
like onDataChanged()


