
Programming with Android:
Network Operations

Federico Montori
Dipartimento di Scienze dell’Informazione

Università di Bologna

 Federico Montori - Network programming with Android 2

Outline

Network operations: OKHttp

Network operations: Download Manager

Network operations: HTTP Client

Network operations: WebView and WebSettings

Network operations: WebView

Network operations: TCP/UDP Sockets

Network operations: Volley

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 3

Android: Network Operations

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"
/>

� In order to perform network operations, specific
permissions must be set on the AndroidManifest.xml.

� Failure in setting the permissions will cause the system to
throw a run-time exception …

 Federico Montori - Network programming with Android

Before we start

❖ Network operations are expensive
▪ In terms of battery
▪ In terms of time
▪ In terms of costs

❖ You should always care about making network
operations (and your app in general) optimized

4

 Federico Montori - Network programming with Android

Lazy first

❖ Make your app Lazy first, by
▪ Decreasing redundant operations (cache)

• If your app needs frequent updates, cache static objects to not
download them every time

▪ Timing operations (deferring them until better situation)
• Wait to perform network operations until device is charging,

connected to a Wifi, etc.
▪ Grouping operations together

• Instead of performing similar operations at slightly different times,
try to perform them together at once

5

 Federico Montori - Network programming with Android

User Preferences

❖ User preferences for network operations matter a lot
▪ User may want to perform network intensive operations

only when connected to WiFi
▪ Synchronization may be performed at night or at home
▪ Updates frequency can be customized

❖ Network-related user preferences activities should
declare a MANAGE_NETWORK_USAGE intent filter

❖ Monitor the CONNECTIVITY_ACTION Broadcast
Intent

6

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 7

Android: Network Operations

ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();
 if (networkInfo != null && networkInfo.isConnected()) {
 // fetch data
 } else {
 // display error
 }

� Before the application attempts to connect to the network,
it should check to see whether the active network
connection is available using getActiveNetworkInfo()
and isConnected() …

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 8

Android: Network Operations

ConnectivityManager connMgr = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
Network[] allNetworks = connMgr.getAllNetworks();

for (Network network : allNetworks) {
NetworkInfo nInfo = connMgr.getNetworkInfo(network);
// Do stuff ...

}

� It is also possible to differentiate between different
connections

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 9

Android: Network Operations

And you can ask for even more

� getType(): to check the network type
■ ConnectivityManager.TYPE_WIFI, ConnectivityManager.TYPE_MOBILE

� getDetailedState(): to obtain fine grained information
■ IDLE, SCANNING, … [Deprecated from API 29]

� isAvailable(): to check whether the network is available
■ Not necessarily connected

� isRoaming(): if the network is operated abroad

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 10

Android: WebView Usage

WebView 🡪 A View that displays web pages, including
simple browsing methods (history, zoom in/out/ search, etc).

Implemented by the WebView class

public WebView(Context context)

Main methods:

� public void loadUrl(String url) 🡪 load the HTML page at url

� public void loadData(String data, String mimeType, string
encoding) 🡪 load the HTML page contained in data

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 11

Android: WebView Usage

All it does is pretty much
showing the content of a
Web page. It’s NOT a
browser.

Useful when you quickly
need content that is always
up to date.

In some case better than
getting data, parsing and
displaying in a layout.

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 12

Android: WebView Usage

By default, the WebView UI does not include any
navigation button …However, callbacks methods
are defined:

�public void goBack()

�public void goForward()

�public void reload()

�public void clearHistory()

@Override
public boolean onKeyDown(int keyCode, KeyEvent
event) {

 // Is there a page in the history?
 if ((keyCode == KeyEvent.KEYCODE_BACK) &&

myWebView.canGoBack()) {
 myWebView.goBack();
 return true;
 }

// Otherwise use the normal behavior
 return super.onKeyDown(keyCode, event);
}

Example:

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 13

Android: WebView Usage

It is possible to modify the visualization options of
a WebView through the WebSettings class.
public WebSettings getSettings()

Some options:
� void setJavaScriptEnabled(boolean)

� void setBuildInZoomControls(boolean)

� void setDefaultFontSize(int)

Also, bear in mind that cleartext data is not allowed by default. If you really
need it then add to your manifest (application tag):

android:usesCleartextTraffic="true"

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 14

Android: WebView Usage

Override the behavior for which links in the WebView open in the
WebView (they in fact don’t throw an intent) with a WebViewClient
myWebView.setWebViewClient(MyWebViewClient);

private class MyWebViewClient extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {

 if ("www.mysite.com".equals(Uri.parse(url).getHost())) {
 // This is my website, so do not override; let my WebView load the page
 return false;
 }
 // The link is not for a page on my site, so throw the intent for browser
 Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(url));
 startActivity(intent);
 return true;
 }
}

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 15

Android: Download Manager

DownloadManager 🡪 System service that
handles long-run HTTP downloads.

DownloadManager dm = (DownloadManager)
getSystemService(DOWNLOAD_SERVICE);

� The client can specify the file to be downloaded through
an URI (path).

� Download is conducted in background (with retries)
� Broadcast Intent action is sent to notify when the

download completes.

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 16

Android: Download Manager

Request request = new DownloadManager.Request(Uri.parse(address));

� The Request class is used to specify a download
request to the Download Manager.

� long enqueue(DownloadManager.Request)

� Cursor query(DownloadManager.Query)

� ParcelFileDescriptor openDownloadedFile(long)

Main methods of the DownloadManager

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 17

Android: Download Manager

� long enqueue(DownloadManager.Request)

� Cursor query(DownloadManager.Query)

� ParcelFileDescriptor openDownloadedFile(long) or better:

long id = dm.enqueue(new DownloadManager.Request(uri)
.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI |
 DownloadManager.Request.NETWORK_MOBILE)
.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,

"output.txt"));

Cursor c = dm.query(
new DownloadManager.Query().setFilterById(id));

// can use DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR etc...

registerReceiver(myReceiver,
 new IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE));

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 18

Android: HTTP Classes

HTTP (HyperText Tranfer Protocol): Network
protocol for exchange/transfer data (hypertext)

Request/Response Communication Model

� HEAD
� GET
� POST
� PUT
� DELETE
� TRACE
� CONNECT

MAIN COMMANDS

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 19

Android: HTTP Classes

HTTP (HyperText Tranfer Protocol): Network
protocol for exchange/transfer data (hypertext)
Two implementations of HTTP Clients for Android historically:

� HTTPClient 🡪 Complete extendable HTTP Client suitable for
web browser (not supported starting from 6.0)

� HTTPUrlConnection 🡪 Light-weight implementation, suitable
for client-server networking applications (recommended by
Google, starting from 2.3)

In both cases, HTTP connections must be managed on a
separate thread, e.g. using Thread Pool (not the UI thread!).

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 27

Android: HTTP Classes

HTTPUrlConnection 🡪 HTTP component to send and receive
streaming data over the web.

1. Obtain a new HttpURLConnection by calling the URL.openConnection()

URL url = new URL("http://www.android.com/");
HttpURLConnection urlConnection = (HttpURLConnection)

url.openConnection();

2. Prepare the request, set the options:
- session cookies
- credentials
- preferred content type (e.g.

setRequestProperty("Content-Type", "text/plain");)

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 28

Android: HTTP Classes

HTTPUrlConnection 🡪 HTTP component to send and receive
streaming data over the web.

3. For POST commands, invoke setDoOutput(true). Transmit data by
writing to the stream returned by getOutputStream().

try {
 urlConnection.setDoOutput(true);
 urlConnection.setRequestMethod("POST");
 urlConnection.setChunkedStreamingMode(0);
 OutputStream out = new

BufferedOutputStream(urlConnection.getOutputStream());
 out.write(“YourPostInput”.getBytes()); }

For best performance use setFixedLengthStreamingMode(int) instead
of setChunkedStreamingMode when the size is known.

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 29

Android: HTTP Classes

HTTPUrlConnection 🡪 HTTP component to send and receive
streaming data over the web.

4. Read the response (data+header). The response body may be read from
the stream returned by getInputStream().

InputStream in = new
BufferedInputStream(urlConnection.getInputStream());
// Do what you want with the InputStream

5. Close the session when ending reading the stream through disconnect().

urlConnection.disconnect();

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 30

Android: HTTP Classes

HTTPUrlConnection 🡪 HTTP component to send and receive
streaming data over the web.

● use getErrorStream() in case of errors

● use the HttpsURLConnection in case of HTTPS URLs

○ Can override the default HostnameVerifier

○ Can override the SSLSocketFactory

○ Can define a custom X509TrustManager to verify certificate chains

● use HttpResponseCache if you need to cache replies in order not to

waste resources

 Federico Montori - Network programming with Android

OKHttp

❖ HTTP Client for Java applications

❖ Supports multiplexing of different connections on the

same socket

❖ Lower latency

❖ Can compress larger downloads transparently

❖ Repeated requests may be served through cache

31

 Federico Montori - Network programming with Android

OKHttp builder

❖ Requests are built through the builder paradigm

32

OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()

.url("https://www.unibo.it/sitoweb/federico.montori2")

.build();

Request request = new Request.Builder()
.header("Authorization", ”your authorization here")
.url("https://www.unibo.it/sitoweb/federico.montori2")
.build();

 Federico Montori - Network programming with Android

OKHttp: network calls

❖ Synchronous call

❖ Asynchronous call

33

Response response = client.newCall(request).execute();

client.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {}

@Override
public void onResponse(Call call, final Response response) {
if (response.isSuccessful()) {

// Here we have the response
}

 Federico Montori - Network programming with Android

OKHttp: WebSockets

WebSocket is a full-duplex communication protocol
based on HTTP (ports 80 and 443) and TCP.

It is a more efficient alternative
to HTTP polling…

Several libraries available, even OkHttp
https://square.github.io/okhttp/4.x/okhttp/okhttp3/-web-socket/
https://github.com/square/okhttp/blob/d854e6d5ad93da4da9b5d5818ee752477e501b18/samples/guide/src/main/java/o
khttp3/recipes/WebSocketEcho.java

34

public final class WebSocketEcho implements WebSocketListener {
private void run() { … }
…

}

https://square.github.io/okhttp/4.x/okhttp/okhttp3/-web-socket/
https://github.com/square/okhttp/blob/d854e6d5ad93da4da9b5d5818ee752477e501b18/samples/guide/src/main/java/okhttp3/recipes/WebSocketEcho.java
https://github.com/square/okhttp/blob/d854e6d5ad93da4da9b5d5818ee752477e501b18/samples/guide/src/main/java/okhttp3/recipes/WebSocketEcho.java

 Federico Montori - Network programming with Android

Volley

❖ Volley is an HTTP library
❖ Supports scheduling of network requests
❖ Can have concurrent connections and handles priorities
❖ Caching mechanism
❖ Can cancel requests
❖ Heavily customizable
❖ Request ordering
❖ Not suited for long download operations (keeps in

memory all streaming content)

35

 Federico Montori - Network programming with Android

Volley: framework

36

❖ Make a request and
add it.

❖ Then it moves through
the pipeline

❖ Cache triages it
❖ If not found it’s

transferred to a network
thread

❖ Response is sent back

 Federico Montori - Network programming with Android

Adding Volley to the project

❖ Add to the build.gradle

❖ Make a request (more on https://developer.android.com/training/volley)

37

implementation 'com.android.volley:volley:1.1.1'

RequestQueue queue = Volley.newRequestQueue(this);
StringRequest stringRequest = new StringRequest(Request.Method.GET, baseUrl,

new Response.Listener<String>() {
 @Override
 public void onResponse(String response) { // do something }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) { // do something }
});
queue.add(stringRequest);

https://developer.android.com/training/volley

 Federico Montori - Network programming with Android

Adding Headers

❖ Custom headers can be added by overriding the
getHeaders method like so:

38

{
 @Override
 public Map<String, String> getHeaders() {
 Map<String, String> params = new HashMap<String, String>();
 params.put("x-vacationtoken", "secret_token");
 params.put("content-type", "application/json");
 return params;
}

 Federico Montori – Network programming with Android (c) Luca Bedogni 2012 39

Android: TCP/IP Communication

TCP/UDP Communication 🡪 Android
applications can use java.net.Socket facilities.

� Use socket-based programming like in Java …

Class DatagramSocket 🡪 UDP Socket

Classes Socket/ServerSocket 🡪 TCP socket

Read/Write on Sockets through InputStream/OutputStream

 Federico Montori - Network programming with Android

Socket example (server)

40

socket=new ServerSocket(10000);

while (true) {
clientSocket = socket.accept();
System.out.println("Connected to:"

+ clientSocket.getInetAddress().toString());
DataOutputStream outStream =

new DataOutputStream(clientSocket.getOutputStream());
double val = rand.nextDouble();
outStream.writeDouble(val);
outStream.close();

clientSocket.close();
}

� Somewhere outside my app...

 Federico Montori - Network programming with Android

Socket example (Android client)

41

Socket socket = new Socket(serverAddress, 10000);
Message messageToSend = myHandler.obtainMessage(); // Handler in the main thread
messageToSend.what = STATUS_UPDATE;
messageToSend.obj = "Connection Established";
myHandler.sendMessage(messageToSend);

DataInputStream inputStream = new DataInputStream(socket.getInputStream());
double val = inputStream.readDouble(); // The actual data

messageToSend = myHandler.obtainMessage();
messageToSend.what = DATA_UPDATE;
String msg = "Value received "+ val;
messageToSend.obj = msg;
myHandler.sendMessage(messageToSend);

inputStream.close();
socket.close();

 Federico Montori - Network programming with Android

Other resources

42

● Cronet https://developer.android.com/guide/topics/connectivity/cronet

○ Chromium network stack made available as a set of libraries

○ Support for HTTP, HTTP2 and QUIC

○ Support for resource caching, asynchronous requests and compression

● gRPC https://developer.android.com/guide/topics/connectivity/grpc

○ Remote Procedure Calls, so no handling of HTTP protocol syntax

○ Protocol buffer encoding instead of text-based JSON os similar

○ Full duplex streaming

https://developer.android.com/guide/topics/connectivity/cronet
https://developer.android.com/guide/topics/connectivity/grpc

 Federico Montori - Network programming with Android

Peer-to-Peer (P2P)

43

INTERNET

P2P

 Federico Montori - Network programming with Android

P2P: Why?

❖ Confidentiality
▪ Information is transferred directly between devices

❖ Speed
▪ Data transfer takes the shortest path

❖ Network relief
▪ If 2 devices communicate infrastructure-less, then the

infrastructure has more available resources
❖ Resilience

▪ More robust than centralized network (if enough clients)

44

 Federico Montori - Network programming with Android

Wi-Fi Direct

❖ Standardized by the Wi-Fi Alliance

❖ Available in popular devices such as smartphones,
printers, TVs

❖ Uses WPA2

❖ Differences with Bluetooth?
▪ Energy efficiency, range, data rate

45

 Federico Montori - Network programming with Android

Wi-Fi Direct: building blocks

❖ Obtain the WifiP2pManager
❖ Discover clients around you
❖ Connect

❖ Define listeners to be notified about specific events

❖ Broadcast Intents for global events

46

 Federico Montori - Network programming with Android

WifiP2pManager methods

47

 Federico Montori - Network programming with Android

WifiP2pManager methods

48

1

2

3

 Federico Montori - Network programming with Android

WifiP2pManager listeners

49

 Federico Montori - Network programming with Android

WifiP2pManager Broadcast Receivers

50

 Federico Montori - Network programming with Android

Other Connection technologies

51

❖ Bluetooth Low Energy
▪ https://developer.android.com/guide/topics/connectivity/bluetooth

❖ NFC
▪ https://developer.android.com/guide/topics/connectivity/nfc

❖ Telephony
▪ https://developer.android.com/guide/topics/connectivity/telecom

❖ WiFi
▪ https://developer.android.com/guide/topics/connectivity/wifi-scan

https://developer.android.com/guide/topics/connectivity/bluetooth
https://developer.android.com/guide/topics/connectivity/nfc
https://developer.android.com/guide/topics/connectivity/telecom
https://developer.android.com/guide/topics/connectivity/wifi-scan

