
Programming with Android:
Background Operation

Federico Montori
Dipartimento di Scienze dell’Informazione

Università di Bologna

 Federico Montori - Programming with Android – Background Operations 2

Outline

Services: Remote Services

Services: Local Services

Thread: Handler and Looper

Thread Management in Android

Notification Services: Toast Notifications

Notification Services: Status Bar Notifications

Broadcast Receivers

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 3

Android: Where are we now …

TILL NOW 🡪 Android Application structured has a single Activity
or as a group of Activities …
� Intents to call other activities
� Layout and Views to setup the GUI
� Events to manage the interactions with the user

Activities executed only in foreground …
� What about background activities?
� What about multi-threading functionalities?
� What about external events handling?

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 4

Android: Where are we now …

� Setup of the application GUI
� GUI event management
� Application Menu and Preferences
�Updates in background mode
� Notifications in case of message reception in background

mode

EXAMPLE: A simple application of Instantaneous Messaging (IM)

 Federico Montori - Programming with Android – Background Operations

Notifications Overview

❖ Notifications are messages from your application
▪ Reminders
▪ External events
▪ Timely information

❖ Can serve 2 cases:
▪ Only informative: a message is displayed to the user
▪ Informative and active: by clicking on it, it is possible to

open the APP or perform directly some operations

5

 Federico Montori - Programming with Android – Background Operations

Notification Types

6

When the notification is created, its
icon appears in the status bar

Scrolling down the status bar
reveals additional details about the
notification

Some notification can also reveal
further information by swiping them
down

 Federico Montori - Programming with Android – Background Operations

Notification Types

7

Heads up notification: useful for
important information, and to notify
the user while watching a full screen
activity (starting from 5.0)

Notifications can also be visible in the lock screen. The developers can
configure the amount of details that has to be made visible.

 Federico Montori - Programming with Android – Background Operations

More notification Types

8

Icon badge: starting with Android 8.0. Users can
get notification information about an app.

Wearables, to show the same notification
on the hand-held device and wearable

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 9

Android: Status Bar Notifications

Notification Manager
Android system component
Responsible for notification management
And status bar updates

STATUS BAR
Notification

� Icon for the status bar
� Title and message
� PendingIntent to be fired

when notification is selected

� Ticket-text message
� Alert-sound
� Vibrate setting
� Flashing LED setting
� Customized layout

OPTIONs:

 Federico Montori - Programming with Android – Background Operations

How a notification is made

1. Small icon
2. App name
3. Timestamp
4. Optional Large Icon
5. Optional Title
6. Optional Text

Starting with Android 7.0, users
can perform simple actions
directly in the Notification

10

 Federico Montori - Programming with Android – Background Operations

Grouping Notification

❖ Notifications can also be updated
▪ Notifications should be updated if they refer to the same content that

has just changed
❖ If more than one notification is needed for the same app, they

can be grouped together
▪ Starting with Android 7.0

❖ Starting with Android 8.0
▪ Notification MUST also set a channel

• To let users have more control about which
kind of notification they want to see

• Can control them through system settings
▪ Channels have also an associated priority

11

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 12

Android: Status Bar Notifications

� For notifications, we will use the NotificationCompat module,

for the newest management of notifications, still providing

backwards compatibility.

🡪 It should be already included, but still you’ll need to check

whether the dependency is there...

dependencies {
 implementation "com.android.support:support-compat:28.0.0"
}

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 13

Android: Status Bar Notifications

� Follow these steps to send a Notification:

1. Get a reference to the Notification Manager

or (better)

2. Build the Notification message (design pattern Builder)

3. Send the notification to the Notification Manager

NotificationManager nm = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE)

NotificationManagerCompat nm = NotificationManagerCompat.from(this);

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this, CHANNEL_ID);
mBuilder.setContentTitle("Picture Download").setContentText("Download in progress")
.setSmallIcon(R.mipmap.ic_launcher_round).setPriority(NotificationCompat.PRIORITY_DEFAULT);

notificationManager.notify(myId, mBuilder.build());

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 14

Android: Status Bar Notifications

� Follow these steps to send a Notification:

1. Get a reference to the Notification Manager

or (better)

2. Build the Notification message (design pattern Builder)

3. Send the notification to the Notification Manager

NotificationManager nm = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE)

NotificationManagerCompat nm = NotificationManagerCompat.from(this);

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this, CHANNEL_ID);
mBuilder.setContentTitle("Picture Download").setContentText("Download in progress")
.setSmallIcon(R.mipmap.ic_launcher_round).setPriority(NotificationCompat.PRIORITY_DEFAULT);

notificationManager.notify(myId, mBuilder.build()); Set by the developer at this time
Used for later modifications if needed

Ignored if older than 8.0

 Federico Montori - Programming with Android – Background Operations

Intent newIntent = new Intent(this, ReceivingActivity.class);
newIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_CLEAR_TASK);
newIntent.putExtra("CALLER","notifyService");
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, newIntent, PendingIntent.FLAG_IMMUTABLE);

(c) Luca Bedogni 2012 15

Define what will happen in case the user selects the notification

Android: Status Bar Notifications

� Define a PendingIntent (intent to be fired later by someone else)

mBuilder.setContentIntent(pendingIntent);

Is more a container for an intent, specifying in which context should be fired, the
dev-defined request code, which intent should be fired and a set of flags.

A Class in your APP, such as a normal
intent

 Federico Montori - Programming with Android – Background Operations

Intent newIntent = new Intent(this, ReceivingActivity.class);
newIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_CLEAR_TASK);
newIntent.putExtra("CALLER","notifyService");
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, newIntent, PendingIntent.FLAG_IMMUTABLE);

(c) Luca Bedogni 2012 16

Define what will happen in case the user selects the notification button(s)

Android: Status Bar Notifications

� Define a PendingIntent (intent to be fired later by someone else)

mBuilder.addAction(R.drawable.ic_notification, "PRESS ME", pendingIntent);

A maximum of three buttons can be added, also media controls etc...
For more information and possibilities go to
https://developer.android.com/training/notify-user/build-notification

Like a delayed “startActivity”

A Class in your APP, such as a normal
intent

https://developer.android.com/training/notify-user/build-notification

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 17

mBuilder.setAutoCancel(true)

Add (optional) flags for notification handling

Send the notification to the Notification Manager

notificationManager.notify(0, mBuilder.build());

Android: Status Bar Notifications

mBuilder.setStyle(new NotificationCompat.BigTextStyle()
 .bigText("Much longer text that cannot fit one line..."))

Add a long text and make the notification expandable

� Notification goes away when tapped

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 18

mBuilder.setLights(0xff00ff00, 300, 100);

Add flashing lights to the notification

This sets a green led
The LED flashes for 300ms and turns it off for 100ms

Android: Status Bar Notifications

mBuilder.setVibrate(long [])
mBuilder.setVibrationPattern(long []) // From API 26

Add a vibration pattern to the notification

mBuilder.setSound(URI sound);

Add a sound to the notification

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 19

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 CharSequence name = getString(R.string.channel_name);
 String description = getString(R.string.channel_description);
 int importance = NotificationManager.IMPORTANCE_DEFAULT;
 NotificationChannel channel =

new NotificationChannel(CHANNEL_ID, name, importance);
 channel.setDescription(description);
 NotificationManager notificationManager =

getSystemService(NotificationManager.class);
 notificationManager.createNotificationChannel(channel);
 }

Set Notification Channels from Android 8.0 (API 26)

Android: Notification Channels

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 20

Android: Notifications best
practices

There is a whole world about notifications and complicated (and
ever-evolving) ways to build them (e.g. grouping, media, progress bars,
in-notification reply, …). For a complete course go to:
● https://developer.android.com/guide/topics/ui/notifiers/notifications

It is although very important to know and implement some best practices:

● The Notification UI, once built, runs on a different system thread held by
a RemoteView object.

● Building a notification may be long and could block the UI. It’s always
better to do it on a worker thread (see later).

● Don’t tease the user with too many notifications...

https://developer.android.com/guide/topics/ui/notifiers/notifications

 Federico Montori - Programming with Android – Background Operations 21

Android: Background Work

PLEASE, PLEASE, PLEASE, KEEP THIS IN MIND:

“

In general, any task that takes more than a few milliseconds should be
delegated to a background thread. Common long-running tasks include
things like decoding a bitmap, accessing storage, working on a machine
learning (ML) model, or performing network requests.

“

 Federico Montori - Programming with Android – Background Operations 22

● By default, all components of the same application run in the
same process and thread (called “main thread” or “UI” thread).

● In Manifest.xml, it is possible to specify the process in which
a component (activity, service, receiver, provider) should run
through the attribute android:process.

● Processes might be killed by the system to reclaim memory.
- Processes’ hierarchy to decide the importance of a process.
- Five types: Foreground, Visible, Service, Background, Empty.
more at: https://developer.android.com/guide/components/activities/process-lifecycle

Android: Processes and Threads

https://developer.android.com/guide/components/activities/process-lifecycle

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 23

● By default, all components of the same application run in the
same process and thread (called “main thread” or “UI” thread).
○ In certain rare cases they do not correspond (only in context of some

system applications)
● Main Thread is responsible for drawing stuff, queuing events

and calling their callbacks functions …
● Sometimes this may yield poor performances when

performing other operations (database transactions,
networking…) and freezes the UI

● I the UI freezes for more than 5 secs it
will be very very unpleasant

Android: Thread Management

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 24

● Android natively supports a multi-threading environment.

● An Android application can be composed of multiple
concurrent threads.

● How to create a thread in Android? … Like in Java!

○ extending the Thread class
○ implementing the Runnable interface
○ AsyncTask <deprecated>
○ Coroutines (Kotlin only)

We also need to manage callbacks and/or allow message passing

Android: Thread Management

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 25

public class MyThread extends Thread {

public MyThread() {
super (“My Thread”);

}

public void run() {
// do your stuff

}
}

myThread m = new MyThread();
m.start();

Android: Thread Management

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 26

executorService.execute(new Runnable() {
 @Override
 public void run() {
 // do your stuff
 }
 }); // See also Lambda notation

ExecutorService executorService = Executors.newFixedThreadPool(4);

Android: Thread Pool

A thread pool is a managed collection of threads that runs tasks in parallel from a
queue. New tasks are executed on existing threads as those threads become idle.
● Be sure to instantiate the pool only once in your application.

An ExecutorService (or an Executor implementing it) takes in input a Runnable
● A Single Abstract Method (SAM) interface

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 27

The UI or main thread is in charge of dispatching events to the
user interface widgets, and of drawing the elements of the UI.

● Do not block the UI thread.

● Do not access the Android UI components from outside the UI thread.

QUESTIONS:
How to update the UI components from worker threads?

● Handlers and Loopers
● AsyncTask was the historical solution (now deprecated)
● Observables (will see it somewhere else)

Android: Thread Management

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 28

Message-passing like mechanisms for Thread communication.

MessageQueue 🡪 Each thread is associated a queue of messages
Handler 🡪 Handler of the message associated to the thread
Message 🡪 Parcelable Object that can be sent/received

Android: Thread Management

Message
queue
(Loop)

Handler

handleMessage(Message msg)

sendMessage(Message msg)

THREAD1 THREAD2

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012

Message loop must be explicitly defined for worker threads.

HOW? Use Looper and Handler objects …

Android: Thread Management

 public void run() {
Looper.prepare(); // Instantiate the queue
handler = new Handler(Looper.myLooper()) {

@Override
public void handleMessage(Message msg) {

// handle here the message
}

}
Looper.loop(); // Have it ready for receiving

}

You can use HandlerThread that has a Looper by default.

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012

You need then to target the thread’s Handler with a message

HOW? Let’s imagine the thread of the previous slide is called mThread

Android: Thread Management

Message m = mThread.handler.obtainMessage(); // new message for mHandler
m.arg1 = “Argument for the message”;
mThread.handler.sendMessage(m);

mThread.start();
Handler mHandler = mThread().handler; // Assuming you can get the handler

mThread.handler.post(new Runnable() {
 @Override
 public void run() { /* Something to do */ } });

You can send it a message to be handled by the handleMessage

OR something to execute on the thread that owns the handler

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012

Message loop is implicitly defined for the UI thread: if you get it
you can create an empty Handler and post task for the UI thread

Android: Thread Management

Handler mainThreadHandler =
HandlerCompat.createAsync(Looper.getMainLooper());

mainThreadHandler.post(new Runnable() {
 @Override
 public void run() { /* Run on UI thread */ } });

OR you can skip all this magic by only using
runOnUiThread(new Runnable() {
 @Override
 public void run() { /* Run on UI thread */ } });

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 32

AsyncTask is a Thread helper class (Android only).

Android: AsyncTask <deprecated>

✧ Computation running on a background thread.
✧ Results are published on the UI thread.
✧ Should be used for short operations

� AsyncTask must be created on the UI thread.
� AsyncTask can be executed only once.
� AsyncTask must be canceled to stop the execution.

RULES

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 33

private class MyTask extends AsyncTask<Par, Prog, Res>

Android: AsyncTask <deprecated>

Must be subclassed to be used
Par → type of parameters sent to the AsyncTask
Prog → type of progress units published during the execution
Res → type of result of the computation

private class MyAsyncTask extends AsyncTask<Void,Void,Void>

private class MyAsyncTask extends AsyncTask<Integer,Void,Integer>

EXAMPLES

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 34

Android: AsyncTask <deprecated>

 The UI Thread invokes the execute method of the AsyncTask:

EXECUTION of the ASYNCTASK

(new MyAsyncTask()).execute(param1, param2 … paramN)

 After execute is invoked, the task goes through four steps:

1. onPreExecute() 🡪 invoked on the UI thread
2. doInBackground(Params…) 🡪computation of the AsyncTask

✧ can invoke the publishProgress(Progress…) method
3. onProgressUpdate(Progress …) 🡪 invoked on the UI thread
4. onPostExecute(Result) 🡪 invoked on the UI thread

 Federico Montori - Programming with Android – Background Operations 35

A Service is a component that can perform long-running
operations in background and does not provide a user interface.

Android: Services

● Activity → UI, can be disposed when it loses visibility

● Service → No UI, disposed when it terminates or when it is
terminated by other components

Register it in the manifest

 A Service provides a robust environment for background tasks …

<service android:name=".ExampleService" />

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 36

Android: Services

● A Service provides only a robust environment where to
host separate threads of our application.

○ A Service is not a separate process.
○ A Service is not a separate Thread (i.e. it runs in the

main thread of the application that hosts it).
○ A Service does nothing except executing what listed in

the OnCreate() and OnStartCommand() methods.
○ Wanna perform potentially blocking operations? Use

Threads!

COMMON MISTAKES

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 37

Android: Services

● A Service provides only a robust environment where to
host separate threads of our application, but it is not a
separate thread...

● Why should we use it then? Well, several reasons but the
main we can think of is:

COMMON MISTAKES

Because if nothing else holds the main thread (i.e. no
activity is running or stopped), then a Service is the only

component that can keep the main thread alive.

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 38

Android: Services

● A Service is started when an application component starts it
by calling startService(Intent).

● Once started, a Service can run in background, even if the
component that started it is destroyed.

● Termination of a Service:
 1. stopSelf() 🡪 self-termination of the service
 2. stopService(Intent) 🡪 terminated by others
 3. System-decided termination (i.e. memory shortage)

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 39

Android: Service Lifetime

OnCreate()

OnStartCommand()

RUNNING

onDestroy()

startService()

startService()

stopService()
selfStop()

startService() might cause the execution of
OnCreate+OnStartCommand, or only of
OnStartCommand, depending whether the Service is
already running …

OnCreate() executed only once when the Service is created.

 Federico Montori - Programming with Android – Background Operations

Android: Intent Service

❖ Created for simple services
▪ Does not handle multiple request simultaneously
▪ Creates by default a HandlerThread where it runs

❖ Handles one Intent at a time
▪ Through onHandleIntent()
▪ Stops after the handling ended

40

public class myIntentService extends IntentService {

 public myIntentService() { super(" myIntentService"); }

 @Override
 protected void onHandleIntent(Intent intent) { // doSomething }
}

 Federico Montori - Programming with Android – Background Operations

Android: Intent Service

❖ Start simple, if you don’t need more:

▪ Remember: it’s a subclass of Service made simple.
▪ It actually runs the body of onHandleIntent() on a separate

thread by default...
▪ You can override the other methods, but be sure to always

return the super call.
▪ onHandleIntent() is performed within the

onStartCommand().
▪ destroyed after the Intent has been handled.

41

 Federico Montori - Programming with Android – Background Operations

Android: More Complex Services

❖ If we want to create a more complex Service that

handles multiple stuff then we might want to:

▪ Run a HandlerThread and get its Looper
▪ Implement a Handler in our Service that will run tasks in

the thread when received by the Looper.
• The handler may also handle the stopping of both the thread and

the service.

▪ Tell what we should do if the Service is killed by the system
• Look for the return flag in the onStartCommand():

– START_STICKY | START_NOT_STICKY | START_REDELIVER_INTENT
42

 Federico Montori - Programming with Android – Background Operations

Android: IntentService implementation
(example)

43

public class HelloService extends Service {

 private Looper serviceLooper;

 private ServiceHandler serviceHandler;

 private final class ServiceHandler extends Handler {

 public ServiceHandler(Looper looper) {

 super(looper);

 }

 @Override

 public void handleMessage(Message msg) {

 // DO YOUR STUFF

 Thread.currentThread().interrupt();

 }

 // Stop the service using the startId

 stopSelf(msg.arg1);

 }

 }

 @Override

 public void onCreate() {

 HandlerThread thread = new

HandlerThread("ServiceStartArguments",

 Process.THREAD_PRIORITY_BACKGROUND);

 thread.start();

 serviceLooper = thread.getLooper();

 serviceHandler = new ServiceHandler(serviceLooper);

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int

startId) {

 Message msg = serviceHandler.obtainMessage();

 msg.arg1 = startId;

 serviceHandler.sendMessage(msg);

// If killed we restart with a NULL intent

 return START_STICKY;

 }

 @Override

 public void onDestroy() {

Toast.makeText(this, "service done",

Toast.LENGTH_SHORT).show();

 }

}

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 44

Android: Foreground Services

● A Foreground Service is a service that is continuously
active in the Status Bar, and thus it is not a good candidate
to be killed in case of low memory.

● The Notification appears between ONGOING pendings.

● To create a Foreground Service:
○ Create a Notification object
○ Call startForeground(id, notification) from onStartCommand()
○ Call stopForeground() to bring it to the background.

Note that you need FOREGROUND_SERVICE permission

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 45

Services and BoundServices

� Services can either be started
with startService() or bound to a
component through
bindService()
○ In the second case the binding

lifecycle takes over
○ Bound services end when all the

bound components unbind
○ These two lifecycles are not

separated, a component can
bind to a started service.
■ in such case unbinding kills,

stopping does not.

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 46

Android: Bound Service

Service Component
(e.g. Activity)

IBinder

IBinder onBind()

ServiceConnection

bindService(Intent, ServiceConnection, flags)

onServiceConnected(ComponentName, IBinder)

When the connection is established,
the Service will call the
onServiceConnected and pass a
reference of the IBinder to the
Component.

� Through the IBinder, the Component can send requests to the Service …

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 47

Android: Bound Service

� When creating a Service, an IBinder must be created to
provide an Interface that clients can use to interact with
the Service … HOW?

1. Extending the Binder class (local Services only)
- Extend the Binder class and return it from onBind()
- Only for a Service used by the same application

2. Using the Android Interface Definition Language (AIDL)
 - Allow to access a Service from different applications.

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 48

public class LocalService extends Service {
// Binder given to clients
private final IBinder sBinder = (IBinder) new SimpleBinder();

@Override
public IBinder onBind(Intent arg0) {

// TODO Auto-generated method stub
return sBinder;

}

public int myFunction () {...};
class SimpleBinder extends Binder {

LocalService getService() {
return LocalService.this;

}
}

}

Android: Bound Service

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 49

public class MyActivity extends Activity {
LocalService lService;
private ServiceConnection mConnection = new ServiceConnection() {

@Override
public void onServiceConnected(ComponentName arg0, IBinder bind) {

SimpleBinder sBinder=(SimpleBinder) bind;
lService=sBinder.getService();

}

@Override
public void onServiceDisconnected(ComponentName arg0) {
}

 };

… bindService(new Intent(this,LocalService.class), mConnection, BIND_AUTO_CREATE);
… IService.myFunction();

Android: Bound Service

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 50

Android: Broadcast Receiver

The Event is an Intent

● Registration of the Broadcast Receiver to the event …

■ Registration through XML code (Manifest-declared)
■ Registration through Java code (Context-declared)

● Handling of the event.

A Broadcast Receiver is a component that is activated only
when specific events occur (i.e. SMS arrival, phone call, etc).

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 51

Android: Broadcast Receiver

A Broadcast Receiver is a component that is activated only
when specific events occur (i.e. SMS arrival, phone call, etc).

OnReceive ()

●

● Single-state component …

● onReceive() is invoked
when the registered event
occurs

● After handling the event,
the Broadcast Receiver is
destroyed.

BROADCAST RECEIVER LIFETIME

EVENT

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 52

Android: Broadcast Receiver

Registration of the Broadcast Receiver to the event …
XML Code: → modify the AndroidManifest.xml

 <application>
<receiver class=“SMSReceiver”>

<intent-filter>
<action android:value=“android.provider.Telephony.SMS_RECEIVED” />

</intent-filter>
</receiver>

</application>

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 53

Android: Broadcast Receiver

Registration of the Broadcast Receiver to the event …
In Java: → registerReceiver(BroadcastReceiver, IntentFilter)

receiver = new BroadcastReceiver() { … }

protected void onResume() {
registerReceiver(receiver, new IntentFilter(Intent.ACTION_TIME_TICK));

}

protected void onPause() {
unregisterReceiver(receiver);

}

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 54

Android: Broadcast Receiver

How to send the Intents handled by Broadcast Receivers?

● void sendBroadcast(Intent intent)
 … No order of reception is specified

● void sendOrderedBroadcast(Intent intent, String permit)
 … reception order given by the android:priority field

sendBroadcast() and startActivity() work on different contexts!

 Federico Montori - Programming with Android – Background Operations(c) Luca Bedogni 2012 55

Android: Broadcast Receiver

onReceive() should be short enough. If you need more time to
process the reaction it may be a good idea to:

● Trigger an IntentService within the onReceive().

● Register the receiver in the context of a long-running

Service.

● Use WorkManager (will see it later).

