Programming with Android:
Kotlin for Android

Federico Montori

Dipartimento di Scienze dell’Informazione
Universita di Bologna

() Android and Kotlin

O Getting started with Kotlin

. Kotlin Tutorial: Fundamentals
@ Kotlin Tutorial: Null Safety

. Kotlin Tutorial: Lambdas

. Kotlin Tutorial: Classes
. Java and Kotlin under comparison

Federico Montori = Programming with Android — Kotlin for Android 2

& toptal

Why Java?

It's been the official language
for years and most
‘ supported until last year.

As for now, it's not the most
used, Kotlin took over this
year, however since we
know Java we can focus on
the Mobile Architecture.

Federico Montori = Programming with Android — Kotlin for Android 3

Android: Kotlin

It is the official programming language for Native Android
since 2019

e Announced by JetBrains in 2011
New language for the JVM

®
e Open source since 2012 under Apache 2 License
e Named after Kotlin Island

o FYIl Java is an island too

Federico Montori = Programming with Android — Kotlin for Android

Kotlin: Kotlin General Features

e lItis a Type Inference language (like Python)
o Still, it is statically typed
e |tis Cross-Platform
e |t compiles to Java Bytecode
o Fully interoperable with Java
o You can write easily mixed code projects
o It can also compile to Javascript and other stuff

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Getting started with

Kotlin is Cross-Platform —like Java, it is not bound to Android

®® 0 finteli inity [~/intellj i /platform/ i i i ing.java [intellj.platform.core]

intellij-community = B platform = Ieg core-api = [src - BN com Emintellj Bulang = Bu folding = (@ LanguageFolding = IDEA

[Project ~ - LanguageFolding java
v core-api [intellij.platform.core]
v husrc
v com.intellij
codelnsight
concurrency

& K Appkt X > & ¥ D,

i src > main > kotlin > kt > sample > app > K App.kt
rride
List<FoldingBuilder> allForLanguage(@NotNull Language
core (Language = .getBaselanguage()) {
| diagnostic List<FoldingBuilder> = forKey(1)
A ——— (.isEmpty()) {
ide
injected.editor
i lang Collections.emptyList()
v Bufolding }
CompositeFoldingBuilder
CustomFoldingBuilder
CustomFoldingProvider

s Locals

this:

kt.sample.app

4vVVVYVYVYYVYY

@otNull
FoldingDescriptor[] buildFoldingDescriptors(@Nullable FoldingBuilder
(1DumbService. isDumbAware() & DumbService.getInstance(oot .getProject()).isDu

Intell

FoldingBuilder
FoldingBuilderEx
FoldingDescriptor
LanguageFolding
injection
ASTNode
CodeDocumentationAwareCo
CodeDocumentationAwareCo
Commenter
CompositeLanguage
CustomUncommenter
DependentLanguage
FCTSBackedLighterAST
FileASTNode
InjectableLanguage
ITokenTypeRemapper
Language

FoldingDescriptor.

FoldingBuilderEx) {
((FoldingBuilderEx)) .buildFoldRegions(

ASTNode = .getNode()
= I =

FoldingDescriptor.

I

builder.buildFoldRegions (ASTNode node, Document document) FoldingDescriptor(]
$9 = FoldingDescriptor.EMPTY FoldingDescriptor(]
Dot, space and some other keys will also close this lookup and be inserted into editor >>

7812 LF: UTF-8%

] IDEA (supported native

Basically the brother of Android Studio...

Federico Montori = Programming with Android — Kotlin for Android

world."

main(args: Array< ng>) {
printin(App().greeting)

Isual Studio Code

Kotlin Tutorial: Variables and Types

Declaration of variables and types

var x: Int =42 // Declaration of a variable with type Int
var x =42 // Declaration of a variable with inferred type Int
val x =42 /I Declaration of a constant with inferred type Int

Type inference does not mean that types are dynamic (like in
Python...)

var X =42
X ="'C // This will give an error

Disclaimer: this is an accelerated tutorial

Complete official guide: https://kotlinlang.org/docs/home.html

Federico Montori = Programming with Android — Kotlin for Android

https://kotlinlang.org/docs/home.html

Kotlin Tutorial: Variables and Types

Basic types: Can always specify them, or:
e Int var x =42

e Long var x = 42L

e Short

e Byte

e Float var x = 42 .42f

e Double var X =42.42

e Boolean var x = true

e Char varx =f

e String var x = “fortytwo”

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Operators

Operations in Kotlin are quite straightforward...

e Arithmetic Operators
o +-"1%

e Logical Operators
o &&||!

e Comparison Operators

O <>== >x=<=I=

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Strings and Prints

Like some other imperative languages, the access point is

the main function.

// Enhanced Hello World Example

fun main() {
val nickname: String = “stradivarius”
printin(“Hello world, my name is $nickname”)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Selection Construct

The IFTE construct is straightforward too...

if (condition) {

// Then Clause
} else {

/[Else Clause

}

There is a contract syntax for assignments

vary =if (x==42)1else 0

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Selection Construct

The case construct is as follows

when (x) {
in 0..21 -> printin(“One line clause”)
in 22..42 -> printin {
printin("Multiple line clause”)

}

else -> printin(“Default clause”)

}

With the double dot (..) you can specify ranges, which
originate Lists (see later).

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Arrays and Lists

val arr: Array<int> = intArrayOf(1, 2, 3) /Il [1,2,3]
printin(arr[0])

Arrays are a class and can be instantiated in several ways (they also have their subtypes):

// Array of int of size 5 with values [0, O, O, 0O, 0]
val arr = IntArray(5)

// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

/[Array of int of size 5 with values [0, 1, 2, 3, 4] (lambda, you'll see...)
var arr = IntArray(5) {it* 1}

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Arrays and Lists

Lists are similar to Java ArrayLists and can be “constants”

or “variables”.

/[Immutable List
val myList = listOf<String>(“one”, “two”, “three”)
printin(myList[0])

// Mutable List (referenced by a val because it is the pointer)
val myMutableList = mutableListOf<String>(“one”, “two”, “three”)
myMutableList.add(“four”)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Loops

The iteration constructs are straightforward too...

// While loop

var counter =0

while (counter < myMutableList.size) {
printin(myMutableList[counter])
counter++

// For loop
for(item in myListMutable) // Here we can use ranges as well
printin(item)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Null Safety

One of the major advantages of Kotlin is the Null Safety

=> The program does not crash because of null values
(remember the annoying Java NullPointerException)

e Basically types are non-nullable, in fact variables are either:
o Initialized

o Explicitly null, but they throw error at compile time
e Variables that can be null are Nullable but calling them is safe

let’'s see how...

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Null Safety

Non nullable types

var s: String = “Hello” // Regular initialization means non-null by default
s = null /[compilation error

Nullable types
var s: String? = “Hello”// Nullable initialization means it can be null

s = null /I this is ok: e.g. if you print it, it will print “null”
Null safety

val | = s.length // Compiler error: “s can be null”
val | = s?.length // If s is null then | is null (if nullable)

val | = if (s I= null) s.length else -1 // Custom workaround

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Null Safety

This is true even for more complex scenarios, for instance:

val name: String? = department?.head?.getName()
name? = department.nead.getName()

If anything in here is null, then the function is not called

You really want it to be not null:

val | = s!l.length /[Casts s to non nullable, can throw
exception

The “Elvis” operator

val | = s?.length ?: -1 // -1 is the default value for | if s is null

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Functions

Ordinary functions (they support the default value)

fun isEven(number: Int = 0): Boolean { // number is set to O if not passed
return number % 2 ==

}
iIsEven(14)

Extension functions

fun Int.isEven(): Boolean { /I Extend the class Int
return this % 2 ==

}
14.isEven()

Federico Montori = Programming with Android — Kotlin for Android

Higher order functions take functions as inputs

fun List<String>.customCount(function: (String) -> Boolean): Int {
var counter =0
for (str in this) {

if (function(str))
counter++
}
return counter
} /l Function that counts members in a List of strings that respect a certain condition

They might as well take any type in (usually called “generics”)

fun <T> List<T>.customCountAllTypes(function: (T) -> Boolean): Int {
var counter =0
for (anything in this) {

if (function(anything))
counter++
}
return counter
} /I Function that counts members in a List of any type that respect a certain condition

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Lambdas

Lambdas are undeclared functions that are passed directly as they are
and used once.

-> Added to Java as well (sometimes we use it with onClickListener...)

Let us use the previous higher order functions...

val myList = listOf<String>("one”, “two”, “three”)
val x: Int = myList.customCount { str -> str.length == 3 }

val x: Int = myList.customCountAllTypes { str -> str.length == 3 }

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Classes

Classes are pretty much like in Java, however they typically have a
primary constructor:

class Animal (// Constructor is within round brackets
val name: String,
val legCount: Int =4 // Default value if not passed
) {
var sound: String = “Hey” // Property not initialized by the constructor
init {
printin(“Hello | am a $name”) // Function executed at instantiation time
}
}
val dog = Animal(“dog”) // Instantiation of a class into an object

val duck = Animal(“duck”, 2)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Classes

Properties have default accessors (setters, getters...)

you can define custom ones or make it private...

/[Equivalent notation
var sound: String = “Hey”
get() = field
set(value) { field = value } // Keyword field refers to the property

// Custom notation
var sound: String = “Hey”
get() = this.name
private set Il Setter is private

val dog = Animal(“dog”)
dog.sound I/ Will access the getter, not the property

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Classes

You can obviously subclass that if the original class is open

class Dog: Animal(“dog”) {
fun bark() {
printin(“WOOF”)

class Duck: Animal(“duck”, 2) {
fun quack() {
printin("QUACK")

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Classes

Let us make that abstract

abstract class AbstractAnimal (
val name: String,
val legCount: Int = 4

)

abstract fun makeSound()

}

Then you'll have to implement the abstract method

class Cat: AbstractAnimal(“cat”) {
override fun makeSound() {
printin(“MEOW”)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin Tutorial: Scope Functions

Scope functions are used to simplify multiple interaction with the same
object:

val snake = Animal("snake") /[Without “apply”
snake.legCount =0
snake.sound = "Hiss"

val snake = Animal("snake").apply { /[With “apply”
legCount =0
sound = "Hiss"

}

There are other Scope Funtions: let, with, run and also
Read the full doc here:

Federico Montori = Programming with Android — Kotlin for Android

https://kotlinlang.org/docs/scope-functions.html

Kotlin Tutorial: Classes

Finally, you can create an anonymous class, if used only once:

val bear = object: AbstractAnimal(“bear”) {
override fun makeSound() {
printin("GROWL")

This concludes our crash tutorial on Kotlin...
Now let us make a recap on the whys and why nots...

Federico Montori = Programming with Android — Kotlin for Android

Kotlin and Java: Differences

We've seen the similarities between kotlin and Java, what about the
differences?

e Explicit types e Type inference
e Strictly OOP e Not necessarily OOP
(e Not Null Safe e Null Safe
<_£ e Explicit set & get e Implicit set & get
:) e + Extension functions
— e + Scope Functions
Java e + Lambdas
e + Implicit Casting
e + Structured Concurrency

o Coroutines (TBC)

Federico Montori = Programming with Android — Kotlin for Android

Kotlin and Android

How to set up an Android project in Kotlin?
Literally in the same waly it is done for Java!

e Still uses XML resources
e Everything still applies to what we have seen so far:
o Resources
o Activity Lifecycle
o Fragments
o Intents
o Views
e Only thing that changes is the syntax...

Federico Montori = Programming with Android — Kotlin for Android

Kotlin and Android: Let’'s code!

We will see an example of an application that touches the main topics
we have seen so far.

Federico Montori = Programming with Android — Kotlin for Android

