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Why Java?

It's been the official language
for years and most
‘ supported until last year.

As for now, it's not the most
used, Kotlin took over this
year, however since we
know Java we can focus on
the Mobile Architecture.
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Android: Kotlin

It is the official programming language for Native Android
since 2019

e Announced by JetBrains in 2011
New language for the JVM

®
e Open source since 2012 under Apache 2 License
e Named after Kotlin Island

o FYIl Java is an island too
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Kotlin: Kotlin General Features

e lItis a Type Inference language (like Python)
o Still, it is statically typed
e |tis Cross-Platform
e |t compiles to Java Bytecode
o Fully interoperable with Java
o You can write easily mixed code projects
o It can also compile to Javascript and other stuff
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Kotlin Tutorial: Getting started with

Kotlin is Cross-Platform —like Java, it is not bound to Android
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Basically the brother of Android Studio...
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world."

main(args: Array< ng>) {
printin(App().greeting)

Isual Studio Code



Kotlin Tutorial: Variables and Types

Declaration of variables and types

var x: Int =42 // Declaration of a variable with type Int
var x =42 // Declaration of a variable with inferred type Int
val x =42 /I Declaration of a constant with inferred type Int

Type inference does not mean that types are dynamic (like in
Python...)

var X =42
X ="'C // This will give an error

Disclaimer: this is an accelerated tutorial

Complete official guide: https://kotlinlang.org/docs/home.html
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https://kotlinlang.org/docs/home.html

Kotlin Tutorial: Variables and Types

Basic types: Can always specify them, or:
e Int var x =42

e Long var x = 42L

e Short

e Byte

e Float var x = 42 .42f

e Double var X =42.42

e Boolean var x = true

e Char varx =f

e String var x = “fortytwo”
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Kotlin Tutorial: Operators

Operations in Kotlin are quite straightforward...

e Arithmetic Operators
o +-"1%

e Logical Operators
o &&||!

e Comparison Operators

O <>== >x=<=I=
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Kotlin Tutorial: Strings and Prints

Like some other imperative languages, the access point is

the main function.

// Enhanced Hello World Example

fun main() {
val nickname: String = “stradivarius”
printin(“Hello world, my name is $nickname”)
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Kotlin Tutorial: Selection Construct

The IFTE construct is straightforward too...

if ( condition ) {

// Then Clause
} else {

/[ Else Clause

}

There is a contract syntax for assignments

vary =if (x==42)1else 0
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Kotlin Tutorial: Selection Construct

The case construct is as follows

when ( x ) {
in 0..21 -> printin(“One line clause”)
in 22..42 -> printin {
printin("Multiple line clause”)

}

else -> printin(“Default clause”)

}

With the double dot (..) you can specify ranges, which
originate Lists (see later).
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Kotlin Tutorial: Arrays and Lists

val arr: Array<int> = intArrayOf(1, 2, 3) /Il [1,2,3]
printin(arr[0])

Arrays are a class and can be instantiated in several ways (they also have their subtypes):

// Array of int of size 5 with values [0, O, O, 0O, 0]
val arr = IntArray(5)

// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

/[ Array of int of size 5 with values [0, 1, 2, 3, 4] (lambda, you'll see...)
var arr = IntArray(5) {it* 1}
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Kotlin Tutorial: Arrays and Lists

Lists are similar to Java ArrayLists and can be “constants”

or “variables”.

/[ Immutable List
val myList = listOf<String>(“one”, “two”, “three”)
printin(myList[0])

// Mutable List (referenced by a val because it is the pointer)
val myMutableList = mutableListOf<String>(“one”, “two”, “three”)
myMutableList.add(“four”)
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Kotlin Tutorial: Loops

The iteration constructs are straightforward too...

// While loop

var counter =0

while (counter < myMutableList.size) {
printin(myMutableList[counter])
counter++

// For loop
for(item in myListMutable) // Here we can use ranges as well
printin(item)
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Kotlin Tutorial: Null Safety

One of the major advantages of Kotlin is the Null Safety

=> The program does not crash because of null values
(remember the annoying Java NullPointerException)

e Basically types are non-nullable, in fact variables are either:
o Initialized

o Explicitly null, but they throw error at compile time
e Variables that can be null are Nullable but calling them is safe

let’'s see how...
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Kotlin Tutorial: Null Safety

Non nullable types

var s: String = “Hello” // Regular initialization means non-null by default
s = null /[ compilation error

Nullable types
var s: String? = “Hello”// Nullable initialization means it can be null

s = null /I this is ok: e.g. if you print it, it will print “null”
Null safety

val | = s.length // Compiler error: “s can be null”
val | = s?.length // If s is null then | is null (if nullable)

val | = if (s I= null) s.length else -1 // Custom workaround
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Kotlin Tutorial: Null Safety

This is true even for more complex scenarios, for instance:

val name: String? = department?.head?.getName()
name? = department.nead.getName()

If anything in here is null, then the function is not called

You really want it to be not null:

val | = s!l.length /[ Casts s to non nullable, can throw
exception

The “Elvis” operator

val | = s?.length ?: -1 // -1 is the default value for | if s is null
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Kotlin Tutorial: Functions

Ordinary functions (they support the default value)

fun isEven(number: Int = 0): Boolean { // number is set to O if not passed
return number % 2 ==

}
iIsEven(14)

Extension functions

fun Int.isEven(): Boolean { /I Extend the class Int
return this % 2 ==

}
14.isEven()
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Higher order functions take functions as inputs

fun List<String>.customCount(function: (String) -> Boolean): Int {
var counter =0
for (str in this) {

if (function(str))
counter++
}
return counter
} /l Function that counts members in a List of strings that respect a certain condition

They might as well take any type in (usually called “generics”)

fun <T> List<T>.customCountAllTypes(function: (T) -> Boolean): Int {
var counter =0
for (anything in this) {

if (function(anything))
counter++
}
return counter
} /I Function that counts members in a List of any type that respect a certain condition
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Kotlin Tutorial: Lambdas

Lambdas are undeclared functions that are passed directly as they are
and used once.

-> Added to Java as well (sometimes we use it with onClickListener...)

Let us use the previous higher order functions...

val myList = listOf<String>("one”, “two”, “three”)
val x: Int = myList.customCount { str -> str.length == 3 }

val x: Int = myList.customCountAllTypes { str -> str.length == 3 }
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Kotlin Tutorial: Classes

Classes are pretty much like in Java, however they typically have a
primary constructor:

class Animal ( // Constructor is within round brackets
val name: String,
val legCount: Int =4 // Default value if not passed
) {
var sound: String = “Hey” // Property not initialized by the constructor
init {
printin(“Hello | am a $name”) // Function executed at instantiation time
}
}
val dog = Animal(“dog”) // Instantiation of a class into an object

val duck = Animal(“duck”, 2)
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Kotlin Tutorial: Classes

Properties have default accessors (setters, getters...)

you can define custom ones or make it private...

/[ Equivalent notation
var sound: String = “Hey”
get() = field
set(value) { field = value } // Keyword field refers to the property

// Custom notation
var sound: String = “Hey”
get() = this.name
private set Il Setter is private

val dog = Animal(“dog”)
dog.sound I/ Will access the getter, not the property
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Kotlin Tutorial: Classes

You can obviously subclass that if the original class is open

class Dog: Animal(“dog”) {
fun bark() {
printin(“WOOF”)

class Duck: Animal(“duck”, 2) {
fun quack() {
printin("QUACK")
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Kotlin Tutorial: Classes

Let us make that abstract

abstract class AbstractAnimal (
val name: String,
val legCount: Int = 4

)

abstract fun makeSound()

}

Then you'll have to implement the abstract method

class Cat: AbstractAnimal(“cat”) {
override fun makeSound() {
printin(“MEOW”)
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Kotlin Tutorial: Scope Functions

Scope functions are used to simplify multiple interaction with the same
object:

val snake = Animal("snake") /[ Without “apply”
snake.legCount =0
snake.sound = "Hiss"

val snake = Animal("snake").apply { /[ With “apply”
legCount =0
sound = "Hiss"

}

There are other Scope Funtions: let, with, run and also
Read the full doc here:
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https://kotlinlang.org/docs/scope-functions.html

Kotlin Tutorial: Classes

Finally, you can create an anonymous class, if used only once:

val bear = object: AbstractAnimal(“bear”) {
override fun makeSound() {
printin("GROWL")

This concludes our crash tutorial on Kotlin...
Now let us make a recap on the whys and why nots...
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Kotlin and Java: Differences

We've seen the similarities between kotlin and Java, what about the
differences?

e Explicit types e Type inference
e Strictly OOP e Not necessarily OOP
( e Not Null Safe e Null Safe
<_£ e Explicit set & get e Implicit set & get
:) e + Extension functions
— e + Scope Functions
Java e + Lambdas
e + Implicit Casting
e + Structured Concurrency

o Coroutines (TBC)
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Kotlin and Android

How to set up an Android project in Kotlin?
Literally in the same waly it is done for Java!

e Still uses XML resources
e Everything still applies to what we have seen so far:
o Resources
o Activity Lifecycle
o Fragments
o Intents
o Views
e Only thing that changes is the syntax...
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Kotlin and Android: Let’'s code!

We will see an example of an application that touches the main topics
we have seen so far.
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