
Programming with Android:
Kotlin for Android

Federico Montori
Dipartimento di Scienze dell’Informazione

Università di Bologna

 Federico Montori - Programming with Android – Kotlin for Android 2

Outline

Kotlin Tutorial: Classes

Kotlin Tutorial: Lambdas

Kotlin Tutorial: Null Safety

Kotlin Tutorial: Fundamentals

Getting started with Kotlin

Android and Kotlin

Java and Kotlin under comparison

 Federico Montori - Programming with Android – Kotlin for Android 3

Android: Java and Kotlin

Why Java?

It’s been the official language
for years and most
supported until last year.

As for now, it’s not the most
used, Kotlin took over this
year, however since we
know Java we can focus on
the Mobile Architecture.

 Federico Montori - Programming with Android – Kotlin for Android 4

Android: Kotlin

It is the official programming language for Native Android
since 2019
● Announced by JetBrains in 2011
● New language for the JVM
● Open source since 2012 under Apache 2 License
● Named after Kotlin Island

○ FYI Java is an island too

 Federico Montori - Programming with Android – Kotlin for Android 5

Kotlin: Kotlin General Features

● It is a Type Inference language (like Python)
○ Still, it is statically typed

● It is Cross-Platform
● It compiles to Java Bytecode

○ Fully interoperable with Java
○ You can write easily mixed code projects
○ It can also compile to Javascript and other stuff

 Federico Montori - Programming with Android – Kotlin for Android 6

Kotlin Tutorial: Getting started with
Kotlin

Kotlin is Cross-Platform →like Java, it is not bound to Android

Intellij IDEA (supported natively)
Basically the brother of Android Studio…

Visual Studio Code

 Federico Montori - Programming with Android – Kotlin for Android 7

Kotlin Tutorial: Variables and Types

Type inference does not mean that types are dynamic (like in
Python…)

var x: Int = 42 // Declaration of a variable with type Int
var x = 42 // Declaration of a variable with inferred type Int
val x = 42 // Declaration of a constant with inferred type Int

Declaration of variables and types

var x = 42
x = ‘c’ // This will give an error

Disclaimer: this is an accelerated tutorial

Complete official guide: https://kotlinlang.org/docs/home.html

https://kotlinlang.org/docs/home.html

 Federico Montori - Programming with Android – Kotlin for Android 8

Kotlin Tutorial: Variables and Types

Basic types:
● Int
● Long
● Short
● Byte
● Float
● Double
● Boolean
● Char
● String

Can always specify them, or:
var x = 42
var x = 42L

var x = 42.42f
var x = 42.42
var x = true
var x = ‘f’
var x = “fortytwo”

 Federico Montori - Programming with Android – Kotlin for Android 9

Kotlin Tutorial: Operators

Operations in Kotlin are quite straightforward…
● Arithmetic Operators

○ + - * / %

● Logical Operators

○ && || !

● Comparison Operators

○ < > == >= <= !=

 Federico Montori - Programming with Android – Kotlin for Android 10

Kotlin Tutorial: Strings and Prints

Like some other imperative languages, the access point is

the main function.

// Enhanced Hello World Example
fun main() {

val nickname: String = “stradivarius”
println(“Hello world, my name is $nickname”)

}

 Federico Montori - Programming with Android – Kotlin for Android 11

Kotlin Tutorial: Selection Construct

The IFTE construct is straightforward too…
if (condition) {

// Then Clause
} else {

// Else Clause
}

There is a contract syntax for assignments

var y = if (x == 42) 1 else 0

 Federico Montori - Programming with Android – Kotlin for Android 12

Kotlin Tutorial: Selection Construct

The case construct is as follows
when (x) {

in 0..21 -> println(“One line clause”)
in 22..42 -> println {

println(“Multiple line clause”)
}
else -> println(“Default clause”)

}

With the double dot (..) you can specify ranges, which
originate Lists (see later).

 Federico Montori - Programming with Android – Kotlin for Android 13

Kotlin Tutorial: Arrays and Lists

Arrays are a class and can be instantiated in several ways (they also have their subtypes):

val arr: Array<Int> = intArrayOf(1, 2, 3) // [1,2,3]
println(arr[0])

// Array of int of size 5 with values [0, 0, 0, 0, 0]
val arr = IntArray(5)

// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

// Array of int of size 5 with values [0, 1, 2, 3, 4] (lambda, you’ll see…)
var arr = IntArray(5) { it * 1 }

 Federico Montori - Programming with Android – Kotlin for Android 14

Kotlin Tutorial: Arrays and Lists

// Immutable List
val myList = listOf<String>(“one”, “two”, “three”)
println(myList[0])

// Mutable List (referenced by a val because it is the pointer)
val myMutableList = mutableListOf<String>(“one”, “two”, “three”)
myMutableList.add(“four”)

Lists are similar to Java ArrayLists and can be “constants”

or “variables”.

 Federico Montori - Programming with Android – Kotlin for Android 15

Kotlin Tutorial: Loops

// While loop
var counter = 0
while (counter < myMutableList.size) {

println(myMutableList[counter])
counter++

}

// For loop
for(item in myListMutable) // Here we can use ranges as well

println(item)

The iteration constructs are straightforward too…

 Federico Montori - Programming with Android – Kotlin for Android 16

Kotlin Tutorial: Null Safety

One of the major advantages of Kotlin is the Null Safety

➔ The program does not crash because of null values
(remember the annoying Java NullPointerException)

● Basically types are non-nullable, in fact variables are either:
○ Initialized
○ Explicitly null, but they throw error at compile time

● Variables that can be null are Nullable but calling them is safe

let’s see how…

 Federico Montori - Programming with Android – Kotlin for Android 17

Kotlin Tutorial: Null Safety

var s: String = “Hello” // Regular initialization means non-null by default
s = null // compilation error

Non nullable types

var s: String? = “Hello”// Nullable initialization means it can be null
s = null // this is ok: e.g. if you print it, it will print “null”

Nullable types

val l = s.length // Compiler error: “s can be null”
val l = s?.length // If s is null then l is null (if nullable)
val l = if (s != null) s.length else -1 // Custom workaround

Null safety

 Federico Montori - Programming with Android – Kotlin for Android 18

Kotlin Tutorial: Null Safety

val name: String? = department?.head?.getName()
name? = department.head.getName()

This is true even for more complex scenarios, for instance:

val l = s!!.length // Casts s to non nullable, can throw
 exception

If anything in here is null, then the function is not called

You really want it to be not null:

val l = s?.length ?: -1 // -1 is the default value for l if s is null
The “Elvis” operator

 Federico Montori - Programming with Android – Kotlin for Android 19

Kotlin Tutorial: Functions

fun isEven(number: Int = 0): Boolean { // number is set to 0 if not passed
return number % 2 == 0

}
isEven(14)

Ordinary functions (they support the default value)

fun Int.isEven(): Boolean { // Extend the class Int
return this % 2 == 0

}
14.isEven()

Extension functions

 Federico Montori - Programming with Android – Kotlin for Android 20

Kotlin Tutorial: Higher Order
Functions

fun List<String>.customCount(function: (String) -> Boolean): Int {
var counter = 0
for (str in this) {

if (function(str))
counter++

}
return counter

} // Function that counts members in a List of strings that respect a certain condition

Higher order functions take functions as inputs

fun <T> List<T>.customCountAllTypes(function: (T) -> Boolean): Int {
var counter = 0
for (anything in this) {

if (function(anything))
counter++

}
return counter

} // Function that counts members in a List of any type that respect a certain condition

They might as well take any type in (usually called “generics”)

 Federico Montori - Programming with Android – Kotlin for Android 21

Kotlin Tutorial: Lambdas

Lambdas are undeclared functions that are passed directly as they are
and used once.
➔ Added to Java as well (sometimes we use it with onClickListener…)

val myList = listOf<String>(“one”, “two”, “three”)

val x: Int = myList.customCount { str -> str.length == 3 }

val x: Int = myList.customCountAllTypes { str -> str.length == 3 }

Let us use the previous higher order functions…

 Federico Montori - Programming with Android – Kotlin for Android 22

Kotlin Tutorial: Classes

Classes are pretty much like in Java, however they typically have a
primary constructor:
class Animal (// Constructor is within round brackets

val name: String,
val legCount: Int = 4 // Default value if not passed

) {
var sound: String = “Hey” // Property not initialized by the constructor

init {
println(“Hello I am a $name”) // Function executed at instantiation time

}
}
val dog = Animal(“dog”) // Instantiation of a class into an object
val duck = Animal(“duck”, 2)

 Federico Montori - Programming with Android – Kotlin for Android 23

Kotlin Tutorial: Classes

Properties have default accessors (setters, getters…)
you can define custom ones or make it private…

// Equivalent notation
var sound: String = “Hey”

get() = field
set(value) { field = value } // Keyword field refers to the property

// Custom notation
var sound: String = “Hey”

get() = this.name
private set // Setter is private

val dog = Animal(“dog”)
dog.sound // Will access the getter, not the property

 Federico Montori - Programming with Android – Kotlin for Android 24

Kotlin Tutorial: Classes

You can obviously subclass that if the original class is open

class Dog: Animal(“dog”) {
fun bark() {

println(“WOOF”)
}

}

class Duck: Animal(“duck”, 2) {
fun quack() {

println(“QUACK”)
}

}

 Federico Montori - Programming with Android – Kotlin for Android 25

Kotlin Tutorial: Classes

Let us make that abstract
abstract class AbstractAnimal (

val name: String,
val legCount: Int = 4

) {
abstract fun makeSound()

}

class Cat: AbstractAnimal(“cat”) {
override fun makeSound() {

println(“MEOW”)
}

}

Then you’ll have to implement the abstract method

 Federico Montori - Programming with Android – Kotlin for Android 26

Kotlin Tutorial: Scope Functions

Scope functions are used to simplify multiple interaction with the same
object:

val snake = Animal("snake").apply { // With “apply”
 legCount = 0
 sound = "Hiss"
}

There are other Scope Funtions: let, with, run and also
Read the full doc here: https://kotlinlang.org/docs/scope-functions.html

val snake = Animal("snake") // Without “apply”
snake.legCount = 0
snake.sound = "Hiss"

https://kotlinlang.org/docs/scope-functions.html

 Federico Montori - Programming with Android – Kotlin for Android 27

Kotlin Tutorial: Classes

Finally, you can create an anonymous class, if used only once:
val bear = object: AbstractAnimal(“bear”) {

override fun makeSound() {
println(“GROWL”)

}
}

This concludes our crash tutorial on Kotlin…
Now let us make a recap on the whys and why nots…

 Federico Montori - Programming with Android – Kotlin for Android 28

Kotlin and Java: Differences

We’ve seen the similarities between kotlin and Java, what about the
differences?

● Explicit types
● Strictly OOP
● Not Null Safe
● Explicit set & get

● Type inference
● Not necessarily OOP
● Null Safe
● Implicit set & get
● + Extension functions
● + Scope Functions
● + Lambdas
● + Implicit Casting
● + Structured Concurrency

○ Coroutines (TBC)

 Federico Montori - Programming with Android – Kotlin for Android 29

Kotlin and Android

How to set up an Android project in Kotlin?
Literally in the same way it is done for Java!
● Still uses XML resources
● Everything still applies to what we have seen so far:

○ Resources
○ Activity Lifecycle
○ Fragments
○ Intents
○ Views

● Only thing that changes is the syntax…

 Federico Montori - Programming with Android – Kotlin for Android 30

Kotlin and Android: Let’s code!

We will see an example of an application that touches the main topics
we have seen so far.

