
Compose UI

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

mailto:federico.montori2@unibo.it

Table of Contents

● What is Compose
● Composables and Previews
● Layouts

○ Dynamic Layouts
● Events
● Recomposition and States
● Side Effects
● Multiplatform

3

“Jetpack Compose is Android’s modern toolkit for
building native UI. It simplifies and accelerates UI
development on Android bringing your apps to life
with less code, powerful tools, and intuitive Kotlin
APIs.”

Jetpack Compose is a Kotlin-based declarative UI
framework developed by Google and released in its
stable version in mid 2021.

What is Compose

4

Surface(modifier = Modifier.fillMaxSize()) {
 Greeting("Android")
 }

@Composable
fun Greeting(name: String) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}

What is Compose

● Compose is a modern approach
● It allows you to write a lot less

code
● It is based on the concept of

Composables
● It is a declarative UI approach

○ What we have seen with Views
can be defined as an imperative
UI approach.

5

Surface(modifier = Modifier.fillMaxSize()) {
 Greeting("Android")
 }

@Composable
fun Greeting(name: String) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}

What is Compose

Elements in the UI are Composable
functions, that take in data and emit UI
elements.

● In this case the element Text
renders to a TextView, but we don’t
need to know it!

● There will be no XML Layouts!
● Hierarchy is specified by calling

composables within composables.

6

Surface(modifier = Modifier.fillMaxSize()) {
 Greeting("Android")
 }

@Composable
fun Greeting(name: String) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}

What is Compose

● Compose is a modern approach
● It allows you to write a lot less

code
● It is based on the concept of

Composables
● It is a declarative UI approach

○ What we have seen with Views
can be defined as an imperative
UI approach.

7

What is Compose

Why a full refactoring? Think about Android Views…

● In Views, widgets have their own behavior
○ They need to be called repeatedly by the business logic to be modified

or referenced.
○ Referencing a view with findViewById every time can quickly build up

errors (null pointers).
● There have been adjustments over time (ViewBindings, DataBindings) to

force programmatic coherence (i.e. you can’t call a UI element that has no
runtime binding).
○ However, that is a workaround and leads to verbosity…

8

What is Compose

Android Views

● Imperative Layout
● XML (plus referencing in

Java/Kotlin)
● Inflate the views into an Activity

(reverse referencing)
○ born for MVC

● Behavior dictated by the business
logic

● Modification

Jetpack Compose

● Declarative Layout
● Kotlin specific
● Declare the views (composables)

from the Activity
○ born for MVVM and modern

cascade approaches
● Behavior embedded in the UI
● Recomposition

9

What is Compose

Android Views: runtime modification

Jetpack Compose: recomposition

LAYOUT ACTIVITY
Create Update Create

ACTIVITY LAYOUT
Create Compose

State Changes

Recompose

Logical references in only one direction… seems familiar?

More on states later…

10

What is Compose

Recomposition may seem inefficient, but…

● It smartly recomposes only parts of
the layout that were actually affected.

● Composition and recomposition work
within coroutines under the hood,
which may trigger a pool of
background threads…
○ Android Views is completely on the

main thread.

Composables and Previews

As Compose is a complete redesign, you will need to import the whole BoM
(Bill of Materials) by yourself…

implementation("androidx.activity:activity-compose:1.8.2")
implementation(platform("androidx.compose:compose-bom:2023.08.00"))
implementation("androidx.compose.ui:ui")
implementation("androidx.compose.ui:ui-graphics")
implementation("androidx.compose.ui:ui-tooling-preview")
implementation("androidx.compose.material3:material3")
androidTestImplementation(platform("androidx.compose:compose-bom:2023.08.00"))
androidTestImplementation("androidx.compose.ui:ui-test-junit4")
debugImplementation("androidx.compose.ui:ui-tooling")
debugImplementation("androidx.compose.ui:ui-test-manifest") 11

Composables and Previews

Theming in Compose is scoped and based on Material3 libraries
● To access or modify theme properties you use MaterialTheme.*

MyTheme { // Everything inside this scope uses MyTheme
// A surface container using the 'background' color from MyTheme

 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background

) {
Greeting("Android")

}
}

12

Composables and Previews

The theme is then declared separately by instantiating a MaterialTheme
fun MyTheme(
 darkTheme: Boolean = isSystemInDarkTheme(), content: @Composable () -> Unit
) {

MaterialTheme(// build elsewhere two objects of type LightColorScheme & DarkColorScheme
 colorScheme = when {

darkTheme -> DarkColorScheme
 else -> LightColorScheme

},
typography = Typography,
content = content

)
}

13

Composables and Previews

You can use the Preview keyword to see the preview of any composable
● Pretty much equivalent to the layout inspector in Views
● You can preview even single widgets
● Preview is dynamic, it gets updated and recomposed, unlike static Views

@Preview(showBackground = true) // This preview shows only the widget, not the fullscreen
@Composable
fun GreetingPreview() {
 MyTheme {
 Greeting("Android")
 }
} 14

Composables and Previews

Widgets in Compose have their own parameters. Few of them are mandatory
(like text for Text). For optional parameters
 we often use named arguments

@Composable
fun Greeting(name: String) {
 Text(
 text = "Hello $name!",
 color = Color.Blue,
 fontSize = 30.sp
)
} 15

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Greeting("Android")
 }
}

Composables and Previews

Widgets in Compose have their own parameters. Few of them are mandatory
(like text for Text). For optional parameters we often use named arguments
● An omnipresent one is Modifier which holds all general appearance

@Composable
fun Greeting(name: String, modifier:
Modifier = Modifier) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)}

16

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Greeting("Android",

modifier = Modifier
.background(Color.Red)
.padding(10.dp))

 }} Notice how it gets injected here

Composables and Previews

Widgets in Compose have their own parameters. Few of them are mandatory
(like text for Text). For optional parameters we often use named arguments
● Modifier parameters are applied sequentially!

@Composable
fun Greeting(name: String, modifier:
Modifier = Modifier) {
 Text(
 text = "Hello $name!",

modifier = modifier
.background(Color.Blue)

)}

17

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Greeting("Android",

modifier = Modifier
.background(Color.Red)
.padding(10.dp))

 }}

Layouts

If you were to place two composables in the same scope, Android does not
know how to arrange them.
● In Android Views we had Layouts which were just Views made for

containing Views.
● In Compose we have composables that are made for containing other

composables.
○ We do not have real layouts here, but we can kind of connect the two concepts…

18

Layouts

● A Row() is similar to a horizontal LinearLayout
● A Column() is similar to a vertical LinearLayout

19

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Column(horizontalAlignment = Alignment.CenterHorizontally) {
 Greeting("Buddy")
 Greeting("Mate")
 }
 }
}
/* Columns and Rows can have their Modifier too… */

Layouts

Old layout params are now contained in the
modifier too. Example with “match parent”:

20

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Column(modifier = Modifier.fillMaxSize()) {
 Greeting("Buddy")
 Greeting("Mate")
 }
 }
}
/* Columns and Rows can have their Modifier too… */

Layouts

Spacing between items is done with a Spacer item
● (horizontal for Row, vertical for Column)

21

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Row() {
 Greeting("Buddy")

 Spacer(modifier = Modifier.size(10.dp))
 Greeting("Mate")
 }
 }
}

Layouts

It is also important to understand the difference between:
● Alignment (align elements in the orthogonal direction of the layout)
● Arrangement (arrange elements in the direction of the layout)

So:
● Column has:

○ verticalArrangement property
○ horizontalAlignment property

● Row has:
○ horizontalArrangement property
○ verticalAlignment property

22

Layouts

● A Box() is similar to a FrameLayout
● A Surface() is also a Box with elevation and some additional checks

23

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Box(modifier = Modifier.size(150.dp)) {
 Greeting("Buddy")
 Greeting("Mate",

modifier = Modifier.align(Alignment.BottomEnd))
 }
 }
}

Layouts

Compose is very efficient with nested layouts
● … unlike Views, where a flat layout is always the best choice
● In fact, we have a ConstrainedLayout in Compose, but it is hardly used.

○ Most of the times you can get away with nesting Rows and Columns

24

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 MyTheme { /* My Compose Body */ }
 }
 }
}

How to setup your
production UI? Just
replace the
setContentView:

Dynamic Layouts

Layouts in Compose are dynamic with respect to the programming logic.
For example, a visibility attribute is here represented by a conditional:

25

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Column {
 Greeting("Buddy")
 Greeting("Mate")
 }
 }
}

@Composable
fun Greeting(name: String) {
if (name.length >= 5)

 Text(
 text = "Hello $name!",
)

}

Dynamic Layouts

Similarly a ListView would be here represented by a simple loop

26

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyTheme {
 Column {
 for (i in 1..5) {
 Greeting("Buddy")
 }
 }
 }
}

@Composable
fun Greeting(name: String) {

 Text(
 text = "Hello $name!",
)

}

Dynamic Layouts

What about the RecyclerView?
In Android Views the RecyclerView is quite painful to implement, because you
need to deal with its optimization, even though it gives out enough level of
detail.

● We needed to specify a layout for each member and inflate it into a
container.

● We needed to define the behavior of each view element.
● We finally had to deal with all the modifications going on with the list, which

delivers a lot of pain when keeping track of the indices. 27

Dynamic Layouts

What about the RecyclerView?
In Compose we just make a lazy loading Column and implement the lambda
associated to each element.

28

 LazyColumn {
 items(count = 5) { i ->
 Greeting("Buddy number ${i + 1}")
 }
 }

States

What triggers recomposition? State changes!

“A state is just a value (a variable) that can change over time and to which one or
more composables depend on.”

Any responsive UI is founded upon states, because the change of a state
triggers the recomposition of every composable using that state.

29

States

Think about a simple UI where we have a text label which displays
the value of a variable and a button that increments that variable.

30

var number = 0
Column {

Text(text = "$number")
Button(onClick = {

number++
}) {

Text(text = "Increment!")
}

}

However this will not work, because
the text field will be updated only
through recomposition. There is no
way in which we can modify it directly.

States

States are similar to LiveData, with all Composable functions
using their values listening for their changes. Use mutableStateOf

31

var number = mutableStateOf(0)
Column {

Text(text = "$number")
Button(onClick = {

number.value++
}) {

Text(text = "Increment!")
}

}

Modifying its value implies calling the
.value member such as in LiveData.

However this will not work properly,
because recomposing this will also trigger
the reinstantiation of number.

How to make the instantiation unique?

States

States are similar to LiveData, with all Composable functions
using their values listening for their changes. Use mutableStateOf

32

var number = remember {mutableStateOf(0)}
Column {

Text(text = "$number")
Button(onClick = {

number.value++
}) {

Text(text = "Increment!")
}

}

How to make the instantiation unique?

The remember block makes sure that the
instantiation is called only once and every
other time is going to be skipped.

States

States are similar to LiveData, with all Composable functions
using their values listening for their changes. Use mutableStateOf

33

var number by remember {mutableStateOf(0)}
Column {

Text(text = "$number")
Button(onClick = {

number++
}) {

Text(text = "Increment!")
}

}

We can make the syntax less verbose by
using the delegation syntax.

In this case we do not need to call the
value attribute, but we treat the State
syntactically as a normal variable.

States

In some cases you may need two-way bindings which imply that the same
element that causes the state change also needs to be updated.

34

var textField by remember { mutableStateOf("") }
OutlinedTextField(

value = newTodoTitle,
onValueChange = {text ->

textField = text
})

In this case the text field displays the content of a state which gets updated by the
text field itself as soon as someone starts typing.

States

States are Observable Types, but they are not LiveData:
● A LiveData can be observed by anyone
● A State is only observed by all Composables that use it

35

interface MutableState<T> : State<T> {
 override var value: T
}

If your State depends on a LiveData, then you should replicate it or better use the
observeAsState Compose plugin to LiveData utilities.

Side Effects

In Compose sometimes we want to call functions or perform actions from a
Composable that influence something outside a composable.
● These may be called again within every recomposition and we can’t

control that. For this reason we wrap these actions into Side Effects

For example, LaunchedEffect is a side effect that executes its body whenever
myState changes (use true if you want to execute it only once).
● It runs within a coroutine scope 36

LaunchedEffect(key1 = myState) {
/* Non-composable action */

}

Side Effects

Another useful one is DisposableEffect: similar to LaunchedEffect, but it
gives you a scope in which you can declare what happens when the
Composable leaves the composition.

37

DisposableEffect(key1 = myState) {
/* Non-composable action to be called when myState changes */
onDispose {

/* Execute this when the composable leaves the composition (e.g. free resources) */
}

}

Multiplatform

“Kotlin Multiplatform (KMP) is an open-source technology by JetBrains for
flexible cross-platform development. It allows you to create applications for
various platforms and efficiently reuse code across them while retaining the
benefits of native programming. With Kotlin Multiplatform, you can develop
apps for Android, iOS, desktop, web, server-side, and other platforms.”

Does this mean that I can write a single codebase for Android an iOS?
● Largely, yes, however the technology is still not far from being in Alpha
● For deploying the iOS app you still need a Mac…

38

Multiplatform

To start developing a Kotlin
Multiplatform App, first
install the multiplatform
Plugin.

39

Multiplatform

A KMM can share between Android and iOS:
● The data logic
● The business logic
● The Compose UI

However, you will still have to set up an Activity on one side and a
MainViewController on the other side to import your Compose UI.

The setup of the dependencies on Gradle is still quite painful!!
40

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

