
System Services

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● System Services in general
● Schedule Jobs

○ Alarm Manager
○ Work Manager

● Battery Manager
● Sensors

○ Activity Recognition
● Other System Services

2

3

System Services

System services are modular, focused components. Functionality exposed by
Android framework API communicates with system services to access the
underlying hardware.

They are exposed to apps in the form of singleton classes
● Often *Manager

val fakeManager: FakeManager =
getSystemService(Context.FAKE_SERVICE) as FakeManager

4

System Services
AccessibilityManager
AccountManager
ActivityManager
AlarmManager
AppOpsManager
AudioManager
BatteryManager
BluetoothManager
ClipboardManager
ConnectivityManager
DevicePolicyManager
DisplayManager
DownloadManager
DropBoxManager
FingerprintManager
InputMethodManager
InputManager

JobScheduler
KeyguardManager
LauncherApps
LayoutInflater
LocationManager
MediaProjectionManager
MediaRouter
MediaSessionManager
MidiManager
NetworkStatsManager
NfcManager
NotificationManager
NsdManager
PowerManager
PrintManager
RestrictionsManager
SearchManager

SensorManager
StorageManager,
SubscriptionManager
TelecomManager
TelephonyManager
TextServicesManager
TvInputManager
UiModeManager
UsageStatsManager
UsbManager
UserManager
Vibrator
WallpaperService
WifiManager
WifiP2pManager
WindowManager

5

Schedule Jobs

There are several ways to do it:

● Alarm Service
○ The classic way, uses the system service plain and simple and can

still force exact scheduling
● JobScheduler

○ Newer system service requiring GPlay for scheduling deferred jobs
● WorkManager

○ Uses the previous two seamlessly and has nice features for chaining
and observation. Cannot schedule exact jobs though.

6

Alarm Service

Fires intents in the future.
val alarmManager = getSystemService(Context.ALARM_SERVICE) as AlarmManager
alarmManager.set(type: Int, triggerAt: Long, operation:PendingIntent)

Type is one of:
● ELAPSED_REALTIME

● ELAPSED_REALTIME_WAKEUP

● RTC

● RTC_WAKEUP

SystemClock.elapsedRealTime()

Elapsed since sys boot.
Better for time slices

System.currentTimeMillis()

UTC Clock
Better for time of the day

7

Alarm Service

Fires intents in the future.
val alarmManager = getSystemService(Context.ALARM_SERVICE) as AlarmManager
alarmManager.set(type: Int, triggerAt: Long, operation:PendingIntent)

Type is one of:
● ELAPSED_REALTIME

● ELAPSED_REALTIME_WAKEUP

● RTC

● RTC_WAKEUP

With WAKEUP the device would fire the
intent even if the device is sleeping. This
will force the device to wake up from
sleep.

N.B. this will not wake up the device if
turned off. This function cannot be
implemented by user-level apps.

8

Alarm Service
Fire alarmIntent in exactly half an hour from now (no time tolerance).
alarmManager.setExact(

AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime() + AlarmManager.INTERVAL_HALF_HOUR,

alarmIntent)

Fire alarmIntent every day at 14:00 starting from today, waking up the device
if sleeping and clustering the alarm with others if present (inexact).
val calendar = Calendar.getInstance()
calendar.timeInMillis = System.currentTimeMillis()
calendar.set(Calendar.HOUR_OF_DAY, 14)
alarmManager.setInexactRepeating(

AlarmManager.RTC_WAKEUP,
calendar.getTimeInMillis(), AlarmManager.INTERVAL_DAY, alarmIntent)

9

Alarm Service

It is possible to cancel a scheduled operation:
● cancel(PendingIntent operation)

○ Match with filterEquals(Intent anotherIntent)

BEST PRACTICE: Sometimes is useful to set the alarms again if the device
has rebooted:

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

[…]
 <action android:name="android.intent.action.BOOT_COMPLETED"></action>

10

Work Manager
WorkManager is an API that makes it easy to schedule deferrable, asynchronous
tasks that are expected to run even if the app exits or the device restarts.

● It uses a mix of
JobScheduler,
AlarmManager and
BroadcastReceiver

● It is NOT a replacement for
scheduling tasks at exact
time, for that you must still
use AlarmManager.

11

Work Manager

Import the necessary modules:
implementation("androidx.work:work-runtime-ktx:2.9.0")

Create a Worker class that defines the job to do:
● the body of the doWork() function runs in a background thread

class UploadWorker(context: Context, params: WorkerParameters):
Worker(context, params) {

 override fun doWork(): Result {
/* Do the work here – in this case, upload some images. */

 uploadImages()
 return Result.success()
 }
}

12

Work Manager

Then, we should instantiate the object by stating implicitly what kind of job is
val uploadWorkRequest = OneTimeWorkRequest.Builder(UploadWorker::class.java)
 .setInitialDelay(myDelayInSeconds.toLong(), TimeUnit.SECONDS)
 .build()

Then we need to get the reference to the WorkManager and submit the job
WorkManager.getInstance(this).enqueue(uploadWorkRequest)

From now on, the job will be executed on top of the constraints declared
while building the WorkRequest.
● There are many parameters and constraints (e.g. retries, network types…)

○ https://developer.android.com/topic/libraries/architecture/workmana
ger/how-to/define-work

https://developer.android.com/topic/libraries/architecture/workmanager/how-to/define-work
https://developer.android.com/topic/libraries/architecture/workmanager/how-to/define-work

13

Work Manager

You can schedule
periodic jobs pretty
easily and WorkManager
is powerful enough to set
a flexible period.

/* In this example the job gets executed every hour with a 15-minutes tolerance */
val periodicUploadRequest = PeriodicWorkRequest.Builder(UploadWorker::class.java,

1, TimeUnit.HOURS, 15, TimeUnit.MINUTES)
.build()

14

Work Manager

You can observe changes on your job by using LiveData
workManager.getWorkInfoByIdLiveData(uploadWorkRequest.id).observe(this) {

workInfo: WorkInfo ->
if (workInfo.state != null && workInfo.state == WorkInfo.State.SUCCEEDED) {

// Your Reaction Here
}

You can also chain jobs
workManager // begin with candidate work requests to run in parallel

.beginWith(Arrays.asList(plantName1, plantName2, plantName3))
// Dependent job (only runs after all previous jobs in chain)
.then(cache)
.enqueue()

15

Battery Manager

Android runs on limited capabilities devices
● It is crucial to use the battery wisely
● The battery service gives us information about the power of the system
● Get it with:

However you don’t handle battery monitoring by calling directly its
functions...

val batteryManager = getSystemService(Context.BATTERY_SERVICE) as BatteryManager

16

Battery Manager

The BatteryManager broadcasts a sticky intent (keeps the latest data in it,
that’s why the receiver is null) accessed by:

A non null receiver will be updated anytime the battery status changes…

val batteryStatus: Intent? =
registerReceiver(null, IntentFilter(Intent.ACTION_BATTERY_CHANGED))

<intent-filter>
<action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
<action android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
<action android:name="android.intent.action.BATTERY_LOW"/>
<action android:name="android.intent.action.BATTERY_OKAY"/>
</intent-filter>

17

Battery Manager

From the intent you can obtain a lot of information about the battery:
val status = batteryStatus?.getIntExtra(BatteryManager.EXTRA_STATUS, -1)

val isCharging = (
status == BatteryManager.BATTERY_STATUS_CHARGING ||
status == BatteryManager.BATTERY_STATUS_FULL
)

if (batteryStatus != null)
val batteryPercent =

batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1) * 100.0 /
 batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1)

18

Sensors

Any smartphone is equipped with a variety of sensors that can tell a lot about
the primary context.

Get it with:

Various kinds of sensors
● Motion (accelerometer, gyroscope, ...)
● Environment (barometer, thermometer, photometer, ...)
● Position (compass, magnetometer, ...)

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager

19

Sensors

Accelerometer

● To measure acceleration

● Given with 3-axes values

● Useful to inspect movements

20

Sensors

Gyroscope

● To measure rotation

● Usually a spinning wheel or a
spinning disk

● Gives angular speed

Sensors

Light Sensor

● Usually a photodiode or
photoresistor

● When exposed to light, they
let more current through

● More current, more light

21

Sensors

Proximity Sensor

● To measure distance from
objects (a sonar or infrared)

● Useful to understand when
the smartphone is in, for
instance, a pocket

● Used to switch off screen
during calls 22

23

Sensors
(can be Sensor.TYPE_ALL)sensorManager.getSensorList(type: Int)

Sensor Type (Hardware/Software) Used for
TYPE_ACCELEROMETER Hardware Acceleration along three axes (+ gravity)

TYPE_AMBIENT_TEMPERATURE Hardware Temperature

TYPE_GRAVITY Can be both Motion Detection

TYPE_GYROSCOPE Hardware Rotation

TYPE_LIGHT Hardware Ambient brightness

TYPE_LINEAR_ACCELERATION Can be both Acceleration along three axes (no gravity)

TYPE_MAGNETIC_FIELD Hardware Compass, indoor navigation

TYPE_ORIENTATION Software Obtaining device position

TYPE_PRESSURE Hardware Obtaining the height from sea level

TYPE_PROXIMITY Hardware Setting off the screen

TYPE_RELATIVE_HUMIDITY Hardware Humidity

TYPE_ROTATION_VECTOR Can be both Motion and Rotation detection

24

Sensors

● Not all smartphones are created equal
● Some carry a set of sensors some others don't
● Also different vendors offer different sensors with different capabilities…

○ getResolution()
○ getMaximumRange()
○ getPower()
○ getVendor()
○ getMinDelay()

Regardless, Sensors do not require permissions!!!

25

Sensors

Each Sensor contains information about the vendor, type and others
● Implement SensorEventListener

○ onAccuracyChanged(sensor: Sensor?, accuracy: Int)
○ onSensorChanged(event: SensorEvent?)

● registerListener(listener: SensorEventListener, sensor: Sensor, rate: Int)
[do this in the onResume (and the unregisterListener in the onPause)]
rate is one of ○ SENSOR_DELAY_NORMAL

○ SENSOR_DELAY_FASTEST
○ SENSOR_DELAY_GAME
○ SENSOR_DELAY_UI

26

Sensors

Example for Light Sensor:

val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
val sensorLight = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT)
sensorManager.registerListener(this, sensorLight, SensorManager.SENSOR_DELAY_UI)

override fun onSensorChanged(event: SensorEvent?) {
 when (event?.sensor?.type) {
 Sensor.TYPE_LIGHT ->
 // React to light change…
 Sensor.TYPE_ACCELEROMETER ->

// …
 }
 }

27

Sensors

In addition to the hardware sensors, there are a number of virtual sensors:
● Gravity
● Linear Acceleration
● Orientation
● Rotation

Sensors have their inherent challenges:

● Bias/Drift: Sensor reading is off by a constant value
● Settling time: Initial sensor readings may be inaccurate
● Noise: Data can’t report a reliable and steady value
● Interference: From the environment

“Readings from
hardware sensors are
computed to offer
aggregated data”

28

Activity Recognition

Detecting the user activity is of paramount importance
● Start vehicle related apps while the user is driving
● Start tracking distances if the user is walking
● Activate fitness apps
How?
● Reading raw values and use machine learning models

○ Raw sensor usage… no permission!
● Exploit Activity Recognition API

○ Permission:

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION"/>

29

Activity Recognition

You need the dependency first:
implementation("com.google.android.gms:play-services-location:21.2.0")

Make then a list with the preferred ActivityTransitions to monitor:
val transitions = ArrayList<ActivityTransition>()
transitions.add(

ActivityTransition.Builder()
.setActivityType(DetectedActivity.IN_VEHICLE)
.setActivityTransition(ActivityTransition.ACTIVITY_TRANSITION_ENTER)
.build()

)
transitions.add(

…
)

30

Activity Recognition

Build the request:
val request = ActivityTransitionRequest(transitions)

Register the request:
ActivityRecognition.getClient(this) // This needs the context

.requestActivityTransitionUpdates(request, myPendingIntent)

.addOnSuccessListener{ /* Request inserted correctly */ }

.addOnFailureListener{ /* Request not inserted */ }

We are passing in a pending intent which is the one that will be fired anytime
one of the requested activity transitions occurs.
Much like Geofencing…

31

Activity Recognition

Get the events via, for instance, a broadcast receiver:
if (ActivityTransitionResult.hasResult(intent)) {
 val result = ActivityTransitionResult.extractResult(intent)
 val eventList = result.getTransitionEvents() // chronological sequence of events....
}

● Events are ordered…

Remember to de-register:
ActivityRecognition.getClient(this).removeActivityTransitionUpdates(myPendingIntent)

32

Other System Services

Audio Service

Able to
● select a stream and control sound
● adjust the volume
● change ring type
● play effects

33

Other System Services

Telephony Service
● Interacts with calls
● Get it with

● Ask the device about call information
○ getCallState()
○ getDataState()
○ getDataActivity()
○ getNetworkType()
○ isNetworkRoaming()

getSystemService(Context.TELEPHONY_SERVICE) as TelephonyManager

34

Other System Services

Connectivity Service

● Check device network state
● Get it with

● Check WI-FI, GPRS, LTE
● Notify connection changes
● Needs

○ android.permission.ACCESS_NETWORK_STATE
○ android.permission.CHANGE_NETWORK_STATE

getSystemService(Context.CONNECTIVITY_SERVICE) as ConnectivityManager

35

Other System Services

WiFi Service
● Get it with

● Check Wi-Fi
○ getWifiState()

■ Returns WIFI_STATE_DISABLED, WIFI_STATE_DISABLING, WIFI_STATE_ENABLED,
WIFI_STATE_ENABLING, WIFI_STATE_UNKNOWN

○ isWifiEnabled() / setWifiEnabled()
● Lists all the configured wifi connections

○ getConfiguredNetworks()

getSystemService(Context.WIFI_SERVICE) as WifiManager

36

Other System Services

WiFi Service
● Check/edit wi-fi connection

○ addNetwork(config: WifiConfiguration)
○ updateNetwork(config: WifiConfiguration)
○ removeNetwork(netid: int)

● Scan for wi-fi networks
○ startScan()

● Be notified about wi-fi changes
○ Broadcast Intent: SCAN_RESULTS_AVAILABLE_ACTION

■ Call getScanResults()

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

