
UI Navigation

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Fragments
○ Fragment Transactions

● Preferences
● Dialogs
● App Bar

○ Menu
○ Drawers

● Navigation Framework

2

3

Fragments

Fragment → A portion of the user interface in an Activity.

Basically, a Fragment is a modular section of an Activity (a FragmentActivity).

→Introduced in Android 3.0 (API Level 11)

DESIGN PHILOSOPHY:
● Structure an Activity as a collection of Fragments.
● Reuse a Fragment on different Activities …

4

Fragments

EXAMPLE: Structuring an Application using multiple Activities.

5

Fragments

EXAMPLE: Structuring an Application using 1 Activity and 2 Fragments.

6

Fragments

To define a new Fragment → create a subclass of Fragment.

Properties:
● Has its own lifecycle (partially connected with the Activity lifecycle)
● Has its own layout (or may have)
● Can receive its own input events
● Can be added or removed while the Activity is running.
● Cannot run by itself (always hosted by an Activity)
● Cannot receive Intents!

class BlankFragment : Fragment() { … }

7

Fragments
Several callback methods to handle various
stages of a Fragment lifecycle.

onCreate() → called when creating the
Fragment (elements retained when stopped).

onPause() → called when the user is leaving
the Fragment (commit changes in need of
persistence).

8

Fragments
The lifecycle of the Activity in which the
Fragment lives directly affects the lifecycle of
the Fragment.

● onPause (Activity) → onPause (Fragment)
● onStart (Activity) → onStart (Fragment)
● onDestroy (Activity) → onDestroy (Fragment)

Fragments have also extra lifecycle callbacks to
enable runtime creation/destruction.

9

Fragments
Several callback methods to handle various
stages of a Fragment lifecycle.

onCreateView() → called when it is time for the
Fragment to draw the user interface the first
time (or coming back from the backstack).

Good to set the properties in onViewCreated().

10

Fragments

onCreateView() → must return the View associated to the UI of the Fragment
Use a LayoutInflater

This is pretty much of a boilerplate… more recently you can do the same with:

override fun onCreateView(
inflater: LayoutInflater, container: ViewGroup?, savedInstanceState: Bundle?): View? {

return inflater.inflate(R.layout.fragment_blank, container, false)
}

class BlankFragment : Fragment(R.layout.fragment_blank)

11

Fragments

Add it to the layout of your Activity like so:

This is going to be a Static Fragment, i.e. it cannot be replaced or moved and
it is very basic.

See Transactions for a better way to do this…

<fragment android:name="com.example.BlankFragment"
 android:id="@+id/blankfragment"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 />

12

Fragments

Once specified, here’s what the system does:

● Assigns the layout to the Activity in the usual way
● Creates all the fragments by instantiating the classes and calling the

onCreate() method.
● It calls the onCreateView() so, though the inflater, the fragment tells:

○ what is the fragment content in terms of view (par 1)
○ and where to put it (usually the container passed to the function) (par 2)

You can always do this programmatically instead

13

Fragments

FragmentManager → a support API element that handles the Fragments’ lifecycle
and scheduling:

The
FragmentManager
manages the
Fragments
associated within the
context.

14

Fragments

A Fragment can get a reference to the Activity:

An Activity can get a reference to the Fragment:

Before a Fragment enters the lifecycle, it calls its onAttach() method right when it
gets passed to the FragmentManager.
The dual is onDetach().

getActivity()

supportFragmentManager.findFragmentById(R.id.blankfragment)

15

Fragments

If you need the activity to react strictly to the Fragment events:

Fragment has to expose an interface that the activity must implement and the
Fragment checks it in the onAttach() (activity is passed here)…

 override fun onAttach(context: Context) {
 super.onAttach(context)
 try {
 val myListener = context as MyListener
 } catch (e: ClassCastException) {
 /* The calling activity is not implementing the MyListener interface */
 }
 }

16

Fragments

If you need the activity to react strictly to the Fragment events:

Fragment has to expose an interface that the activity must implement and the
Fragment checks it in the onAttach() (activity is passed here)…

 override fun onAttach(context: Context) {
 super.onAttach(context)
 try {
 val myListener = context as MyListener
 } catch (e: ClassCastException) {
 /* The calling activity is not implementing the MyListener interface */
 }
 }

17

Fragment Transactions

● Fragments can be added/removed/replaced while the Activity is running …
● Each set of changes to the Activity is called a Transaction.
● Transaction can be saved in order to allow a user to navigate backward

among Fragments when he clicks on the “Back” button.

For these Dynamic Fragments you should specify a FragmentContainerView

<androidx.fragment.app.FragmentContainerView
 android:id="@+id/blankfragment"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 />

18

Fragment Transactions
Perform a transaction on the FragmentContainerView:
val transaction: FragmentTransaction = supportFragmentManager.beginTransaction()
transaction.run {

setReorderingAllowed(true)
replace(R.id.blankfragment, BlankFragment::class.java, null)
addToBackStack("MyLabel")
commit()

}

This will inject BlankFragment into the container, replacing whatever was there…

/* The fragment-ktx module provides a commit block that automatically calls
beginTransaction and commit for you. */
supportFragmentManager.commit { … }

19

Fragment Transactions

A Transaction is not performed till the commit …
● If addToBackStack() is not invoked the old Fragment is destroyed and it is

not possible to navigate back.
● If addToBackStack() is invoked the old Fragment is stopped and it is possible

to resume it when the user navigates back.
● popBackStack() simulates a Back from the user.
Both Fragments and Activities make use of a backstack, however:
● The backstack of the activities is kept by the system, whereas the backstack

of the fragments is kept by the host activity.
● Saving a fragment to the backstack has to be explicitly requested.

20

Fragment Transactions

With FragmentContainerView new Fragments can be replaced easily.
● Layout of Fragments have always to be within a FrameLayout (not

necessarily true for <fragment>).
● If FragmentContainerView has an android:name or a class then it triggers a

Fragment Transaction when the Activity starts up.

<androidx.fragment.app.FragmentContainerView
 android:id="@+id/blankfragment"
 android:name="com.example.navigationexample.BlankFragment"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 />

21

Shared Preferences

● SharedPreferences are a convenient way to store configuration parameters
on the disk

● Structured with a key-value mode

Preference TAG Preference VALUE

Preference TAG Preference VALUE

Preference TAG Preference VALUE

Preference TAG Preference VALUE

Shared
Preferences

22

Shared Preferences

SharedPreferences could be either private or public
● Public means that other applications could potentially read such preferences

○ only until Android 7, now for that you must use a ContentProvider
● Private means that they could be restricted at

○ Application level
○ Activity level

We can also set a Preference screen, by using the Settings API from Jetpack.

Shared preferences are identified as a Bundle of data

23

Shared Preferences

From the activity…

getSharedPreferences("name of the bundle", Context.MODE_PRIVATE)

Get a reference to the preference file identified by the string parameter

getPreferences(Context.MODE_PRIVATE)

Get a reference to the default preference file associated to the calling activity

PreferenceManager.getDefaultSharedPreferences(this)

Get a reference to the default shared preferences, which are also used to create
the Preference Screen

24

Shared Preferences

Get values
preferences.getString("key", "default value") // return default value if key does not exist

Edit the preferences

with (preferences.edit()) { // This will give back a SharedPreferences.Editor object
 putString("key", "new value")
 commit()
}

Alternatively you could also call apply() instead of commit, which writes the data
to the disk asynchronously. Calling commit() stops your main thread.

25

Shared Preferences

You can interact with the default SharedPreferences through preferences screen.
● Starting with Android 10, android.preference is deprecated.
● Use Androidx Preference Library (or Settings API) instead.
add:

● It comes with a built-in Material Design look and feel
● It uses the res/xml resource directory

implementation("androidx.preference:preference-ktx:1.2.0")

26

Shared Preferences
● Use either basic Preference if you want no widget
● Use a facility if you want widgets

○ https://source.android.com/devices/tech/settings/settings-guidelines
○
○

<PreferenceScreen
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <SwitchPreferenceCompat
 app:key="notifications"
 app:title="Enable message notifications"/>
 <Preference
 app:key="feedback"
 app:title="Send feedback"
 app:summary="Report technical issues or suggest new features"/>
 </PreferenceScreen>

res/xml/my_pref.xml

https://source.android.com/devices/tech/settings/settings-guidelines

27

Shared Preferences
To inflate the XML hierarchy on a screen, just extend the PreferenceFragment
and display it as you would with any other Fragment.
● Remember, this works with the DefaultSharedPreferences

class MySettingsFragment : PreferenceFragmentCompat() {
 override fun onCreatePreferences(savedInstanceState: Bundle?, rootKey: String?) {
 setPreferencesFromResource(R.xml.my_pref, rootKey)
 }
}

28

Dialog
Used to interact with the user
Little messages, easy answers
Different kinds:
● AlertDialog
● DatePickerDialog
● TimePickerDialog
● DialogFragment

○ This is an actual Fragment

val builder = AlertDialog.Builder(this)
 builder.also {
 it
 .setMessage("Are you sure you want to exit?")
 .setCancelable(false)
 .setPositiveButton("Yes", { dialog, id -> finish() })
 .setNegativeButton("No", { dialog,id -> dialog.cancel() })
 }

 val alert: AlertDialog = builder.create()

 alert.show()

29

Dialog

cancelable
through back?

 val items = arrayOf("Red", "Green", "Blue")
 val builder = AlertDialog.Builder(this)
 builder.also {
 it
 .setTitle("Pick a color")
 .setItems(items) { dialog, item ->
 Toast.makeText(this, items[item], Toast.LENGTH_LONG).show()
 }
 }

 val alert: AlertDialog = builder.create()

 alert.show()
30

Dialog

class PurchaseConfirmationDialogFragment : DialogFragment() {
 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog =
 AlertDialog.Builder(requireContext())
 .setMessage(getString(R.string.order_confirmation))
 .setPositiveButton(getString(R.string.ok)) { _,_ -> }
 .create()
}
PurchaseConfirmationDialogFragment().show(childFragmentManager, "Header")

31

Dialog
For non-standard Dialogs you should implement a FragmentDialog

For a more customized behavior you can override onCreateView() and
onViewCreated() as usual.

 <com.google.android.material.appbar.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <androidx.appcompat.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary" />
 </com.google.android.material.appbar.AppBarLayout>

32

App Bar
“In its most basic form, the action bar displays the title for the activity on one side
and an overflow menu on the other. Even in this basic form, the app bar provides
useful information to users and gives Android apps a consistent look and feel.”

Use the toolbar tag and
wrap it into an
AppBarLayout to give it a
bunch of other behaviors
such as swipe events
etc…

setSupportActionBar(findViewById(R.id.my_toolbar))

33

App Bar
The toolbar will float over your activity displaying access to the Navigation
Drawer and the Menu.
Set an appropriate theme sticking to “NoActionBar” to prevent the system using
the default action bar.
In your Activity:

If the action bar is set, we can do cool things such as changing the home
image next to the app name…

supportActionBar?.apply {
setDisplayHomeAsUpEnabled(true)

 setHomeAsUpIndicator(R.drawable.ic_launcher_foreground)
}

34

Menu
It appears whenever the user presses the menu button on the app bar
● Useful for giving different options without leaving the current Activity
● Don’t make menus too big, or they’ll cover entirely the Activity

The menu is declared in XML
● Place a file inside res/menu/
● Inflate the menu inside the Activity
● Useful if you want to create the same menu inside different activities

35

Menu
Create res/menu/menu.xml
We need:
● IDs of menu elements
● Title of each element
● Icon of each element

Inside the Activity, create onCreateOptionsMenu()
● Inflate the menu
● Add functionality to the buttons

36

Menu
Create res/menu/menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/item1" android:title="First Option"></item>
 <item android:id="@+id/item2" android:title="Second Option">
 <menu>
 <item android:id="@+id/item3" android:title="Third Option"/>
 <item android:id="@+id/item4" android:title="Fourth Option"/>
 </menu>
 </item>
</menu>

37

Menu
Then in your Activity inflate the menu in its place:

This is is the procedure for the Options Menu belonging to the toolbar, but there
are other kinds of menu (Contextual Menu, Popup Menu, …).

 override fun onCreateOptionsMenu(menu: Menu?): Boolean {
 val inflater: MenuInflater = menuInflater
 inflater.inflate(R.menu.menu, menu)
 return super.onCreateOptionsMenu(menu)
 }

38

Menu
React from your activity to Menu click events:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 return when (item.itemId) {
 R.id.item1 -> {
 // Do your stuff
 true
 }

[...]

 else -> super.onOptionsItemSelected(item)
 }
 }

39

NavigationDrawer
Novel navigation component, hidden when not in use, appears
when swiping from the left or by clicking on the top-left drawer
icon, if bound to an action bar.

<LinearLayout …>
 <ImageView … /> <TextView … /> <TextView … />
</LinearLayout>

<menu>< group android:checkableBehavior="single">
 <item … /> <item … /> <item … /> <item … />
 </group>

<item android:title="Communicate">
<menu> <item … /> <item … /> </menu>

</item>
</menu>

res/layout/nav_header_main.xml

res/menu/activity_main_drawer.xml

40

NavigationDrawer
Novel navigation component, hidden when not in use, appears
when swiping from the left or by clicking on the top-left drawer
icon, if bound to an action bar.

 <com.google.android.material.navigation.NavigationView
 android:id="@+id/nav_view"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:fitsSystemWindows="true"
 app:headerLayout="@layout/nav_header_main"
 app:menu="@menu/activity_main_drawer" />

41

NavigationDrawer
DrawerLayout should be added as root view inside the layout and has to contain:
● Layout when NavigationDrawer is hidden (YourMainLayout)
● Content of the navigation drawer (the NavigationView)

<androidx.drawerlayout.widget.DrawerLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:openDrawer="start">

 <!-- you main layout … -->
 <com.google.android.material.navigation.NavigationView … />

</androidx.drawerlayout.widget.DrawerLayout>

42

NavigationDrawer
The Navigation Drawer responds to events as well…

val drawerLayout: DrawerLayout = findViewById(R.id.drawer_layout)
val navigationView: NavigationView = findViewById(R.id.nav_view)
navigationView.setNavigationItemSelectedListener { menuItem ->

menuItem.setChecked(true)
drawerLayout.closeDrawers()
// do stuff on top of the menu item...
true

}

To link properly a Navigation Drawer to the App Bar as we know it, let us use the
Navigation Framework

43

Navigation
Android Jetpack has launched the Android Navigation framework
https://developer.android.com/guide/navigation
Much easier way to handle navigation through:
● NavHostFragment (in practice you have 1 Activity with many fragments

interleaving in the NavHostFragment as container).
● NavigationController (the central brain)
● A Navigation Graph

Remember: Navigation is sourced into a Nav host fragment: an empty container
within which the navigation takes place. There may be an Activity change,
although infrequent.

https://developer.android.com/guide/navigation

44

Navigation

Add the necessary dependencies…
implementation("androidx.navigation:navigation-fragment-ktx:2.7.7")
implementation("androidx.navigation:navigation-ui-ktx:2.7.7")

The Navigation Graph:
● An XML resource connecting destinations

(fragments) through actions (events).
● The XML resource type is “navigation”.
● It must take place within a

NavHostFragment (although destinations
can also be activities).

45

Navigation
You can edit the Navigation graph via the Navigation Editor.

1. Destination panel: you can see
all your resources

2. Graph Editor: Contains a visual
representation of your
navigation graph. You can
switch between Design view
and the underlying XML
representation in the Text view.

3. Attributes: Shows attributes for
the currently-selected item in
the navigation graph.

46

Navigation
Instantiate the Nav Host in the activity where you want the Navigation to take place. This is
implemented automatically by a class called NavHostFragment
Also specify to which navigation graph we are referring to by using the navGraph attribute.
defaultNavHost allows the fragment to intercept the back button.

<fragment android:id="@+id/nav_host_fragment_content_main"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/mobile_navigation" />

47

Navigation
In creating a destination through the Editor you
need to specify 4 different fields:
● The Type field indicates whether the

destination is implemented as a fragment,
activity, or other custom class in your source
code.

● The Layout field contains the name of the
destination’s XML layout file.

● The ID field contains the ID of the destination
which is used to refer to the destination in
code.

● The Name dropdown shows the name of the
class that is associated with the destination.
You can click this dropdown to change the
associated class to another destination type.

48

Navigation
In creating an action through the Editor you
need to connect two destinations and
specify 3 different fields:
● The Type field contains “Action”.
● The ID field contains the ID for the

action.
● The Destination field contains the ID for

the destination fragment or activity.

<action
android:id="@+id/myaction"
app:destination="@id/blankFragment2"

/>

49

Navigation
Here’s how it will look like in the end…

In order to perform any action we need
to retrieve the NavHostFragment:

<navigation xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
xmlns:android="http://schemas.android.com/apk/res/android"
 app:startDestination="@id/blankFragment">
 <fragment
 android:id="@+id/blankFragment"
 android:name="com.example.cashdog.cashdog.BlankFragment"
 android:label="fragment_blank"
 tools:layout="@layout/fragment_blank" >
 <action
 android:id="@+id/myaction"
 app:destination="@id/blankFragment2" />
 </fragment>
 <fragment
 android:id="@+id/blankFragment2"
 android:name="com.example.cashdog.cashdog.BlankFragment2"
 android:label="fragment_blank_fragment2"
 tools:layout="@layout/fragment_blank_fragment2" />
</navigation>

val navHostFragment: NavHostFragment =
supportFragmentManager

.findFragmentById(
R.id.nav_host_fragment_content_main
) as NavHostFragment

50

Navigation
Simply navigate by declaring the action:

navHostFragment.navController.navigate(R.id.myaction)

Or use SafeArgs, which ensure type safety
➔ Follow this to add the classpath https://developer.android.com/guide/navigation/use-graph/pass-data#kts

● Once enabled, it creates a class for each origin destination ensuring type safety when
performing an action. The class is called {name_of_origin} + “Directions”

● Such class has a method for each of the actions that returns a NavDirection object to be
passed to the navigate function.

Considering the previous XML:

val action: NavDirections = BlankFragmentDirections.myaction()
navHostFragment.navController.navigate(action)

https://developer.android.com/guide/navigation/use-graph/pass-data#kts

51

Navigation
Finally, link the top-level destinations to the Navigation Drawer through the App Bar

val navController = findNavController(R.id.nav_host_fragment_content_main)
val drawerLayout: DrawerLayout = findViewById(R.id.drawer_layout)
val navView: NavigationView = findViewById(R.id.nav_view)

/* Populate the NavigationDrawer (elements in the navigation drawer menu must have the
same id as the top-level destinations in the navigation graph */
val appBarConfiguration = AppBarConfiguration(

setOf(R.id.nav_home, R.id.nav_gallery, R.id.nav_slideshow), drawerLayout
) // This also replaces the UP icon in the app bar with the “hamburger”
setupActionBarWithNavController(navController, appBarConfiguration)

/* This redirects the setNavigationItemSelectedListener to the navigation actions */
navView.setupWithNavController(navController)

52

Navigation
Navigation keeps a backstack of all the transactions and overrides the usage of the back
button to navigate back the backstack.
It also sets a up button on the toolbar that does exactly the same thing as back, but it never
exits the app (it is replaced by e.g. the navigation “hamburger” icon).
It creates a fake backstack if we deep link to a certain screen.

This behavior is handled through the following:

override fun onSupportNavigateUp(): Boolean {
val navController = findNavController(R.id.nav_host_fragment_content_main)
return navController.navigateUp(appBarConfiguration) || super.onSupportNavigateUp()

}

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

