
Data Management

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● SQLite for Android
○ Operations
○ Cursors

● Content Providers
● Room

○ Interacting with MVVM
● HTTP Requests

○ HTTPUrlConnection
○ Volley
○ Retrofit

● Firebase (hints)
● SSOT

2

3

SQLite for Android

● General purpose solution
● Lightweight database based on SQL
● Standard SQL syntax

● Android gives a standard interface to SQL tables of other apps
● For application tables no content providers are needed
Why a local database? Since you can’t assume connectivity
Single Source of Truth: SSOT refers to the concept where certain data has
only one official source to be used by data consumers (i.e. humans and
software) for the true current version of that data (more on that later).

 SELECT name FROM table WHERE name = “Federico”

4

SQLite for Android

● A DBMS to store information
○ Useful for structured informations

● Create a DBHelper that extends SQLiteOpenHelper
● Fill it with methods for managing the database
● Better to use constants like

○ TABLE_GRADES
○ COLUMN_NAME
○ …

This is an overview of how it is done underneath for simple projects.
For a structured approach, use Room

5

SQLite for Android

Our database will look like this:

grade table:
● id: integer, primary key, auto increment
● name: text, not null
● class: text, not null
● grade: integer, not null

Remember that database operations are potentially blocking!
Remember to always use threads for them.

6

SQLite for Android

A best practice is to define constants that identify column titles…

Interface “BaseColumns” provides the field _ID required by CursorAdapter (see
later)

companion object StudentContract {
 // Table contents are grouped together in an anonymous object.
 object StudentEntry : BaseColumns {
 const val TABLE_NAME = "students"
 const val COLUMN_NAME = "name"
 const val COLUMN_CLASS = "class"
 const val COLUMN_GRADE = "grade"
 }
}

7

SQLite for Android

Create a class that extends SQLiteOpenHelper and implement its onCreate
method…

class DbHelper(context: Context) :
SQLiteOpenHelper(context, DATABASE_NAME, null, DATABASE_VERSION) {

override fun onCreate(db: SQLiteDatabase) {
db.execSQL(

"CREATE TABLE ${StudentEntry.TABLE_NAME} (${BaseColumns._ID} INTEGER PRIMARY KEY, " +
"${StudentEntry.COLUMN_NAME} TEXT, ${StudentEntry.COLUMN_CLASS} TEXT," +
"${StudentEntry.COLUMN_GRADE} TEXT)"

)
}

companion object { const val DATABASE_NAME = "Students.db", const val DATABASE_VERSION = 1 }
}

val dbHelper = DbHelper(context)

8

SQLite for Android

Insert information into a database

val db = dbHelper.writableDatabase

val values = ContentValues().apply {
put(StudentEntry.COLUMN_NAME, "Mario Rossi")
put(StudentEntry.COLUMN_CLASS, "LAM")
put(StudentEntry.COLUMN_GRADE, "30")

}

// Insert the new row, returning the primary key value of the new row
// Params are: the table, what to do in case of empty content values, the values to insert
val newRowId = db?.insert(StudentEntry.TABLE_NAME, null, values)

9

SQLite for Android

Update information in a database

val db = dbHelper.writableDatabase

val values = ContentValues().put(StudentEntry.COLUMN_GRADE, "29")

val selection = "${StudentEntry.COLUMN_NAME} LIKE ?" // arg injection (replacing the ?)
val selectionArgs = arrayOf("Mario Rossi")
val count = db.update(
 StudentEntry.TABLE_NAME,
 values,
 selection,
 selectionArgs)

10

SQLite for Android

Delete information from a database

val db = dbHelper.readableDatabase

// Define 'where' part of a query.
val selection = "${StudentEntry.COLUMN_NAME} LIKE ?"
// Specify arguments in placeholder order.
val selectionArgs = arrayOf("Mario Rossi")
// Issue SQL statement.
val deletedRows = db.delete(StudentEntry.TABLE_NAME, selection, selectionArgs)

11

SQLite for Android

Query information from a database

val db = dbHelper.readableDatabase

// Define a projection: the SELECT part of a query
val projection = arrayOf(BaseColumns._ID, StudentEntry.COLUMN_NAME)

val cursor = db.query(// Returns a Cursor
StudentEntry.TABLE_NAME, // The table to query
projection, // The array of columns to return (pass null to get all)
"${StudentEntry.COLUMN_GRADE} = ?", // The columns for the WHERE clause
arrayOf("30"), // The values for the WHERE clause (injected args)
null, // GROUP BY
null, // FILTER BY
null // SORT

)

12

SQLite for Android

Parse a Cursor (a pointer to the obtained columns that starts from index -1)
val items = mutableListOf<String>()
with(cursor) {
 while (moveToNext()) {
 val item = getString(getColumnIndexOrThrow(StudentEntry.COLUMN_NAME))
 items.add(item)
 }
}
cursor.close()

override fun onDestroy() {
 dbHelper.close()
 super.onDestroy()
}

You should leave the db connection open for as long as you need to access it

13

Content Providers

A system to access shared data
Similar to a REST web service
For each Content Provider, one or more URIs are
assigned in the form:

Be aware that some ContentProviders may
request permissions

content://<authority>/path

A Content Provider is seen by other applications as a DB interface that they
can query.

14

Content Providers

● You need to get the URI
○ Usually this is declared as public inside the content provider class
○ URI = Table in the provider (authority = DB, path = table in the DB)

● Make a query, maybe adding some where clauses
○ You'll get a Cursor after that
○ Navigate the Cursor

Content
Provider

15

Content Providers

As you can see, Content
Providers allow the access to
Public Files in the Scoped
Storage
Find them all at
https://developer.android.com
/reference/android/provider/p
ackage-summary.html

Class Description
AlarmClock To interact with the alarm
BlockedNumberContract To get blocked numbers
Browser To perform commands on the browser
CalendarContract To handle calendar information
CallLog Log of past calls
ContactsContract Get and add contacts
DocumentsContract Interact with documents
DocumentsProvider Interact with documents
MediaStore Access Video, Pictures, Audio and more
Settings Inquiry system settings

https://developer.android.com/reference/android/provider/package-summary.html
https://developer.android.com/reference/android/provider/package-summary.html
https://developer.android.com/reference/android/provider/package-summary.html

16

Content Providers

Example: Contacts are exposed via a Content Provider, for which we need
permission: <uses-permission android:name="android.permission.READ_CONTACTS" />

// Does a query against the remote table and returns a Cursor object, this query is a “select all”
cursor = contentResolver.query(

ContactsContract.Contacts.CONTENT_URI, // The content URI of the words table
null, // The columns to return for each row [SELECT]
null, // Either null or the clause [WHERE]
null, // Either empty or the selection args
null // The sort order for the returned rows

)

while (cursor.moveToNext()) {
val item = cursor.getString(cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME))

}

17

Content Providers

To create a Content Provider: create a class that extends
android.content.ContentProvider and pick the URIs for your resources

class ExampleProvider : ContentProvider() {
private val sUriMatcher = UriMatcher(UriMatcher.NO_MATCH).apply {

addURI("com.example.app.provider", "table3", 1)
addURI("com.example.app.provider", "table3/#", 2)

}

override fun query(uri: Uri?, projection: Array<out String>?, selection: String?,
selectionArgs: Array<out String>?, sortOrder: String?): Cursor? {

when (sUriMatcher.match(uri)) {
1 -> { … }
2 -> { … }

18

Content Providers

Register the ContentProvider in the manifest using the <provider> tag and:

● android:authorities (unique name of the provider)

● android:name (Class that implements it)

● various permissions...

Content
Provider

19

Content Providers

You can easily share files using FileProvider (a special Content Provider)
<provider

android:name="androidx.core.content.FileProvider"
android:authorities="com.example.myapp.fileprovider"
android:grantUriPermissions="true"
android:exported="false">
<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/filepaths" />

</provider>

Create res/xml/filepaths.xml
<paths>

<files-path path="images/" name="myimages" />
</paths>

Now other apps can access your file using
URI like
content://com.example.myapp.fileprovider/myimages
/default_image.jpg

20

Room

Remember MVVM?

Let us talk about the Model

The Model is whatever is persistent in
out macro system, which includes
persistent data in the local database
and remote data.

For the local database, the framework
recommended by Android is Room

Model

21

Room

Room provides an abstraction layer over SQLite.
You should always use Room if your project is
sufficiently complex…

● Database
○ Contains the database holder
○ Main access point

● Data Access Objects (DAOs)
○ Interface with methods to access the

database
● Entities

○ Database tables

22

Room

Room is a generative library that generates code according to annotations.

Most probably, in order to use it properly, you will need to use KAPT (Kotlin
Annotation Processing Tool) to be able to do it.

plugins { // Module-level configuration file
 kotlin("kapt")
}

dependencies {
 implementation("androidx.room:room-ktx:2.6.1")
 kapt("androidx.room:room-compiler:2.6.1")
}

23

Room

It has to be an abstract class extending RoomDatabase

@Database(entities = [Entity1::class, Entity2::class], version = 1, exportSchema = false)
abstract class myDatabase : RoomDatabase() {
 abstract fun entity1Dao(): Entity1Dao
 abstract fun entity2Dao(): Entity2Dao
 abstract fun twoEntitiesDao(): TwoEntitiesDao
}

Why abstract?
Room implements the conversion from the database interactions to your app classes
automatically. Just tell what you want in and out (DAOs are in fact abstract).
● Room in fact sticks to the concept of marshaling and unmarshaling (like serialization):

○ “transforming the memory representation of an object into a data format suitable for
storage or transmission and vice versa”

24

Room

For each Entity, Room creates a database Table
Each field references a column, except for those marked with @Ignore
@Entity(tableName = "my_entity") /* A table called my_entity with two columns: index and field1*/
class Entity1(
 @PrimaryKey
 @NonNull
 @ColumnInfo(name = "index")
 var id: String,

 var field1: String,
 @Ignore
 var temp: String
)

Tables and columns can have custom names by using tableName and ColumnInfo

25

Room

Entities fields needs to public - you have to provide getters and setters
Each entity needs at least one @PrimaryKey
● Primary keys can be defined with more than one field

● The autoGenerate property automatically assigns IDs

● Speed up queries with indices

@Entity(primaryKeys = {"firstName", "lastName"})

 @PrimaryKey(autoGenerate = true)
 var id: String

@Entity(indices = {@Index("name"), @Index(value = {”first_name", ”last_name"})})

26

Room

● Defining uniqueness:

● Defining Relationships:

● Nested Objects

@Entity(indices = {@Index(value = {"first_name", "last_name"}, unique = true)})

@Entity(foreignKeys = @ForeignKey(entity = User::class, parentColumns = "id", childColumns = "user_id"))

data class Material (val name : String, val weight: String)
@Entity
class myEntity (

…
@Embedded
var objectMaterial: Material,

)

27

Room

● Defining relations:

Same as ForeignKey, but lets you make atomic queries (will see how)

If many-to-many relationship, then specify two one-to-many relations

class Entity1AndEntity2 (
 @Embedded
 var e1: Entity1,
 @Relation(
 parentColumn = "id",
 entityColumn = "user_id"
)
 var e2: Entity2
)

If it’s one-to-many then you need to put
a list of Entity2 here instead of only
one.

28

Room

DAOs (Data Access Objects) embed the calls to the database.
● They are abstract classes or interfaces

○ Just specify what you want in and out and the query
○ Room generated an implementation at compile time, automatically

handling the marshaling between entities and cursors.

@Dao
interface MyDao {
 @QueryType(params…)
 fun dbMethod(params…): ReturnType
}

// @QueryType can be: @Insert, @Update, @Delete, @Query

29

Room

● A DAO can be either an interface or an abstract class

○ If Abstract class, it takes the DB as input in the constructor.

● DO NOT perform DAO operations in the main thread,

○ this is btw forbidden unless you specify it

○ Typically use Worker Threads (coroutines or a thread pool)

● DO NOT implement it

30

Room

@Insert

@Update

@Delete

@Insert(onConflict = OnConflictStrategy.REPLACE)
fun insertUser(user: User): Unit

@Insert
fun insertBothUsers(user1: User, user2: User)

@Insert
fun insertUsersAndFriends(user: User, friends: List<User>)

@Update
fun updateUser(user: User): Unit

@Delete
fun deleteUser(user: User): Unit

@Query("SELECT * FROM user")
fun loadAllUsersObservable(): LiveData<List<User>>

31

Room

@Query

@Query + parameters

@Query + LiveData

@Query("SELECT * FROM user")
fun loadAllUsers(): List<User>

@Query("SELECT * FROM user WHERE age > :minAge")
fun loadAllUsersOlderThan(minAge: Int): List<User>

The Room persistence library supports observable queries, which return
LiveData objects.
● Observable queries are written as part of a DAO.
● Do not explicitly run them into a separate Thread (it is done by default).
● Changes in the Database are immediately notified to the LiveData.

32

Room

● Query on multiple tables
@Query("SELECT * FROM book " + "INNER JOIN loan ON loan.book_id = book.id " +

"INNER JOIN user ON user.id = loan.user_id " + "WHERE user.name LIKE :userName")
fun findBooksBorrowedByNameSync(userName: String): List<Book>

}

● Query a relation
@Transaction
@Query("SELECT * FROM Entity1")
fun getRelations(): List<Entity1AndEntity2>

Filters only the object of Entity1 that have a respective on Entity2. The

@Transaction ensures that this is atomic as it would be 2 queries.

33

Room

● Updating APP’s features may require updating the database

○ You add a UI field and need to add a DB field

○ You change the type of a field

○ You don’t need anymore a field

● Room handles it providing the Migration environment

○ Remember:

●

●

@Database(entities = [Entity1::class, Entity2::class], version = 1, exportSchema = false)
abstract class myDatabase : RoomDatabase() {

…
}

34

Room

Each Migration class defines a startVersion and endVersion
● At runtime, Room runs each migrate method in order

Room.databaseBuilder(context.applicationContext, myDatabase::class.java, "database-name")
.addMigrations(MIGRATION_1_2, MIGRATION_2_3).build();

companion object {
val MIGRATION_1_2 = object: Migration(1, 2) {

 override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL("CREATE TABLE ‘Fruit’ (‘id’ INTEGER, ‘name’ TEXT, PRIMARY KEY(‘id’))")

}

val MIGRATION_2_3 = …
}

35

HTTP

HTTP (HyperText Tranfer Protocol): Network protocol for exchange/transfer
data (hypertext).

Request/Response Communication Model
● MAIN METHODS:

○ HEAD
○ GET
○ POST
○ PUT
○ DELETE
○ TRACE
○ CONNECT

36

HTTP

Two implementations of HTTP Clients for Android historically:

● HTTPClient → Complete extendable HTTP Client suitable for web browser
(not supported starting from 6.0)

● HTTPUrlConnection → Light-weight implementation, suitable for
client-server networking applications (recommended by Google, starting
from 2.3)

In both cases, HTTP connections must be managed on a separate thread, e.g.
using Thread Pool (not the UI thread!).

37

HTTPUrlConnection

HTTPUrlConnection → HTTP component to send and receive streaming data
over the web.

1. Obtain a new HttpURLConnection by calling the URL.openConnection()
 val url: URL = URL("http://www.android.com/")
 val urlConnection: HttpURLConnection = url.openConnection() as HttpURLConnection

2. Prepare the request, set the options:
● session cookies
● credentials
● preferred content type

(e.g. setRequestProperty("Content-Type", "text/plain"))

38

HTTPUrlConnection

HTTPUrlConnection → HTTP component to send and receive streaming data
over the web.

3. For POST commands, invoke setDoOutput(true). Transmit data by writing to
the stream returned by getOutputStream().

urlConnection.doOutput = true
urlConnection.requestMethod = "POST"
urlConnection.setChunkedStreamingMode(0) // use setFixedLengthStreamingMode if size is known
val out: OutputStream = BufferedOutputStream(urlConnection.outputStream)
out.write("YourPostInput".toByteArray())

39

HTTPUrlConnection

HTTPUrlConnection → HTTP component to send and receive streaming data
over the web.

4. Read the response (data+header). The response body may be read from the
stream returned by getInputStream().

val inStream: InputStream = BufferedInputStream(urlConnection.inputStream);
// Do what you want with the InputStream

5. Close the session when ending reading the stream through disconnect().

urlConnection.disconnect()

40

HTTPUrlConnection

HTTPUrlConnection → HTTP component to send and receive streaming data
over the web.

● use getErrorStream() in case of errors
○ use the HttpsURLConnection in case of HTTPS URLs

● Can override the default HostnameVerifier
● Can override the SSLSocketFactory
● Can define a custom X509TrustManager to verify certificate chains
● use HttpResponseCache if you need to cache replies in order not to waste

resources

41

Volley

Volley → HTTP library with caching mechanism and async calls

● Volley is an HTTP library
● Supports scheduling of network requests
● Can have concurrent connections and handles priorities
● Caching mechanism
● Can cancel requests
● Heavily customizable
● Request ordering
● Not suited for long download operations (keeps in memory all

streaming content)

42

Volley

● Make a request and add it.
● Then it moves through the pipeline
● Cache triages it
● If not found it’s transferred to a

network thread
● Response is sent back

Add the dependency in Gradle:

implementation("com.android.volley:volley:1.2.1")

43

Volley

Volley → HTTP library with caching mechanism and async calls
Make a request (verbose syntax):
val queue: RequestQueue = Volley.newRequestQueue(this)
val stringRequest: StringRequest = StringRequest(

Request.Method.GET,
MY_URL,
Response.Listener<String>() {

response -> // Do stuff to handle the response
},
Response.ErrorListener() {

error -> // Do stuff in case of error
}

)
queue.add(stringRequest)

44

Volley

Volley → HTTP library with caching mechanism and async calls

Custom headers can be added by overriding the getHeaders method like so:

{ /* It is important to use the keyword object on StringRequest to be able to override this */
override fun getHeaders(): MutableMap<String, String> {

val headers = HashMap<String, String>()
headers["Authorization"] = "Basic <<YOUR BASE64 USER:PASS>>"
return headers

} }

45

Retrofit

Retrofit → HTTP library for automatic Marshaling/Unmarshalling content

● Retrofit is a type-safe HTTP client for Java (yet another one)
○ full doc https://square.github.io/retrofit/

● It translates automatically XML and JSON objects into POJO (Plain-Old Java
Objects)

● It is very similar to Room, indeed it can use the same Entities
○ We can say it is its dual for remote resources

● Here we will just see some basic functionalities, you can then explore further...
● Import the necessary dependencies (for JSON in this example):

 implementation("com.squareup.retrofit2:retrofit:2.3.0")
 implementation("com.squareup.retrofit2:converter-gson:2.3.0")

https://square.github.io/retrofit/

46

Retrofit

Retrofit → HTTP library for automatic Marshaling/Unmarshalling content

Just design a normal data class
Use the SerializedName to specify what name it has in the JSON/XML data frame.

data class RetroPhoto(
 @SerializedName("albumId")
 var AlbumId: Int,

 @SerializedName("id")
 var id: Int
)

Ideally I want to convert remote resources into
RetroPhoto objects. In our case I am using
https://jsonplaceholder.typicode.com/photos

https://jsonplaceholder.typicode.com/photos

47

Retrofit

Retrofit → HTTP library for automatic Marshaling/Unmarshalling content

Then set up the Retrofit client → this one translates JSON

class RetrofitClientInstance { /* Singleton with lazy loading */
 companion object {
 private lateinit var retrofit: Retrofit
 const val BASE_URL = "https://jsonplaceholder.typicode.com"
 fun getRetrofitInstance(): Retrofit {
 if (!this::retrofit.isInitialized) { /* Kotlin 2.1 improvement */
 retrofit = Retrofit.Builder().baseUrl(BASE_URL)

.addConverterFactory(GsonConverterFactory.create()).build()
 }
 return retrofit
 } }}

48

Retrofit

Retrofit → HTTP library for automatic Marshaling/Unmarshalling content

● Then, just like with the DAOs, create an interface for each remote call
○ Just like for the DAOs, they will be automatically implemented for you…

This will return a Call object: an instance of an interaction with the remote server.
The Call needs to be effectively issued (asynchronously maybe) in order to be
effective...

interface GetDataService {
 @GET("/photos")
 fun getAllPhotos(): Call<List<RetroPhoto>>
}

49

Retrofit

Retrofit → HTTP library for automatic Marshaling/Unmarshalling content

● Then, enqueue the call
val service = RetrofitClientInstance.getRetrofitInstance().create(GetDataService::class.java)
val call: Call<List<Todo>> = service.getAllPhotos()
call.enqueue(object : Callback<List<RetroPhoto>> {

override fun onResponse
(call: Call<List<RetroPhoto>>, response: Response<List<RetroPhoto>>) {

val myList = response.body() /* Do your stuff with the result */
 }

override fun onFailure(call: Call<List<RetroPhoto>>, t: Throwable?) {
Log.e("RETROFIT", "something went wrong... but life goes on")

}
})

50

Firebase

Firebase is a Google app development platform that gives you an easy-to use and
reactive backend for your app.

● Realtime Database:
○ The original database, a simple JSON tree, supporting easy queries and an easier

startup.
○ Made for performance, low latency, few data

● Cloud Firestore:
○ JSON-like documents organized into collections, supporting more advanced queries

and a lot more scalability.

IN BOTH CASES YOU CAN PERFORM QUERIES AND OBSERVE THEM AS THE
DATABASE IS REACTIVE

51

Firebase

52

Firebase

Add the dependency:

Observe the query from your ViewModel (the result get passed to a LiveData so we
have two nested listeners).

 implementation("com.google.firebase:firebase-database-ktx:20.3.1")

val mDatabase: FirebaseDatabase =
FirebaseDatabase.getInstance("https://wp4demo-default-rtdb.firebaseio.com")
/* Let’s assume we have a simple data class TemperatureDataPoint */
val tempPoint = MutableLiveData<TemperatureDataPoint>()
mDatabase.getReference("Temperature").addChildEventListener(object: ChildEventListener {

override fun onChildAdded(snapshot: DataSnapshot, previousChildName: String?) {
tempPoint.postValue(snapshot.getValue(TemperatureDataPoint::class.java))

}
/* TODO implement other members ... */

})

https://wp4demo-default-rtdb.firebaseio.com

53

SSOT

SSOT model (Single Source of Truth) ensures that the request for the data is
ALWAYS made against a single source
→ With Room and LiveData, your single source may be the Room Database

● IDEA: when requesting remote data, ALWAYS save it to your database and
provide the LiveData returned by the database, so the ViewModel does not
know who updated it.

● This is why you need an intermediate Repository class that handles all the
different calls to data sources.

54

SSOT

ViewModel

Remote

DAO

SSOT

Only asks to
SSOT for the
data.

Fetches/update
s data from/to
Remote, same
with DAO

Fresh Data

DAO is needed
to keep data
locally

55

SSOT

SSOT model →Let’s get back to the retrofit call

When you ask for all the photos from the ViewModel:
val service = RetrofitClientInstance.getRetrofitInstance().create(GetDataService::class.java)
val call: Call<List<Todo>> = service.getAllPhotos()
call.enqueue(object : Callback<List<RetroPhoto>> {

override fun onResponse
(call: Call<List<RetroPhoto>>, response: Response<List<RetroPhoto>>) {

val myList = response.body() /* INSERT THIS LIST INTO YOUR LOCAL DB! */
 }

override fun onFailure(call: Call<List<RetroPhoto>>, t: Throwable?) {
Log.e("RETROFIT", "something went wrong... but life goes on")

}
})

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

