
Background Operations

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Notifications
● Multithreading

○ Message Passing
○ Coroutines

● Services
○ Intent Services
○ Bound Services

● Broadcast Receivers

2

3

Short Recap

TILL NOW: Android Application structured has a single Activity or as a group
of Activities
● Intents to call other activities
● Layout and Views to setup the GUI
● Events to manage the interactions with the user

Activities executed only in foreground …
● What about background activities?
● What about multi-threading functionalities?
● What about external events handling?

4

Short Recap

Example: What can we do for an Instant Messaging (IM) application?

● Setup of the application GUI ✅
● GUI event management ✅
● Application Menu and Preferences ✅
● Updates in background mode ❎
● Notifications of message reception in background mode ❎

5

Notifications

Notifications are messages from your application
● Reminders
● External events
● Timely information

Can serve 2 cases:
● Only informative: a message is displayed to the user
● Informative and active: by clicking on it, it is possible to open the APP

or perform directly some operations

6

Notifications

When the notification is created, its icon
appears in the status bar

Scrolling down the status bar reveals
additional details about the notification

Some notification can also reveal further
information by swiping them down

7

Notifications

Heads up notifications: useful for important
information, and to notify the user while
watching a full screen activity (starting from
5.0) while providing direct actions.

Notifications can also be visible in the lock
screen. Developers can configure the
amount of visible details.

8

Notifications

Icon badge: starting with Android 8.0. Users
can get notification information about an app.

Wearables, to show the same
notification on the handheld
device and wearable.

9

Notifications

1. Small icon
2. App name
3. Timestamp
4. Optional Large Icon
5. Optional Title
6. Optional Text

Starting with Android 7.0, users can perform
simple actions directly in the Notification

10

Notifications

Notifications can also be updated
● Notifications should be updated if they refer to the same content

that has just changed
If more than one notification is needed for the same app,
they can be grouped together
● Starting with Android 7.0
Starting with Android 8.0
● Notification MUST also set a channel

○ To let users have more control about which kind of notification they want to see
○ Can control them through system settings

● Channels have also an associated priority

11

Notifications

STATUS BAR Notification Manager
Android system component
Responsible for notification

management
And status bar updates

Notification
● Icon for the status bar
● Title and message
● PendingIntent to be fired

when notification is selected
● Other options…

12

Notifications

These are the to send a notification:
Step 1: Get a reference to the NotificationManager

val notificationManager = getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager

or better:
val notificationManager = NotificationManagerCompat.from(this)

This is a System Service which we have to invoke to tell the operating system
that we are doing things that may affect the world outside our app.

13

Notifications

Step 2: Create a notification channel (since Android 8)

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
val CHANNEL_ID = "My Channel Id"
val importance = NotificationManager.IMPORTANCE_DEFAULT
val channel = NotificationChannel(CHANNEL_ID, "MyChannelName", importance)
channel.description = "My description"
val notificationManager = NotificationManagerCompat.from(this)
notificationManager.createNotificationChannel(channel)

}

Notification channels are mandatory since API 26, for lower versions running the
app, the channel will just be ignored.

14

Notifications

Step 3: Build the notification message (design pattern Builder)

val builder = NotificationCompat.Builder(this, CHANNEL_ID)
.setSmallIcon(androidx.core.R.drawable.notification_bg)
.setContentTitle("Remember that you will die!")
.setContentText("Let me explain a number of reasons why this is the case, blah, blah, blah...")
.setPriority(NotificationCompat.PRIORITY_DEFAULT)

Step 4: Commit the building process and fire the notification.

val myNotficationId = 0
notificationManager.notify(myNotficationId, builder.build())

ignored if API version < 26

set by the developer, used for later modification

15

Notifications

What happens if the user taps on the notification?
Define a Pending Intent (a container for an intent to be fired by someone else).

val newIntent: Intent = Intent(this, MainActivity.javaClass)
newIntent.flags = Intent.FLAG_ACTIVITY_NEW_TASK or Intent.FLAG_ACTIVITY_CLEAR_TASK
newIntent.putExtra("caller", "notification")
val pendingIntent: PendingIntent = PendingIntent.getActivity(

this, 0, newIntent, PendingIntent.FLAG_IMMUTABLE
) // getActivity is just like startActivity for instantaneous Intents

Then add it to your notification builder…
requestCode, set by the developer,

builder.setContentIntent(pendingIntent)

16

Notifications

What happens if the user taps on the notification?
Define a Pending Intent (a container for an intent to be fired by someone else).

val newIntent: Intent = Intent(this, MainActivity.javaClass)
newIntent.flags = Intent.FLAG_ACTIVITY_NEW_TASK or Intent.FLAG_ACTIVITY_CLEAR_TASK
newIntent.putExtra("caller", "notification")
val pendingIntent: PendingIntent = PendingIntent.getActivity(

this, 0, newIntent, PendingIntent.FLAG_IMMUTABLE
) // getActivity is just like startActivity for instantaneous Intents

Or add it as a button!
● A maximum of three buttons can be added, or media controls…

○ For more information and possibilities go to https://developer.android.com/training/notify-user/build-notification

builder.addAction(androidx.core.R.drawable.notification_action_background, "PRESS ME", pendingIntent)

https://developer.android.com/training/notify-user/build-notification

17

Notifications

There is a whole world about notifications and ever-evolving ways to build them
(e.g. grouping, media, progress bars, in-notification reply, …). For a complete
course: https://developer.android.com/guide/topics/ui/notifiers/notifications

It is although very important to know and implement some best practices:
● The Notification UI, once built, runs on a different system thread held by a

RemoteView object.
● Building a notification may be long and could block the UI. It’s always better to

do it on a worker thread (see later).
● Don’t tease the user with too many notifications...

https://developer.android.com/guide/topics/ui/notifiers/notifications

18

Multithreading

IMPORTANT:
“In general, any task that takes more than a few milliseconds should
be delegated to a background thread. Common long-running tasks

include things like decoding a bitmap, accessing storage, working on
a machine learning (ML) model, or performing network requests.”

19

Multithreading

By default, all components of the same application run in the same process and
thread (called “Main Thread” or “UI Thread”).

● In Manifest.xml, it is possible to specify the process in which a component
(activity, service, receiver, provider) should run through the attribute
android:process.

● Processes might be killed by the system to reclaim memory.
○ Processes’ hierarchy to decide the importance of a process.
○ Five types: Foreground, Visible, Service, Background, Empty.
○ more at: https://developer.android.com/guide/components/activities/process-lifecycle

https://developer.android.com/guide/components/activities/process-lifecycle

20

Multithreading

By default, all components of the same application run in the same process and
thread (called “main thread” or “UI” thread).
● In certain rare cases they do not correspond (only in context of some system

applications)
● Main Thread is responsible for drawing stuff, queuing events and calling their

callbacks functions …
● Sometimes this may yield poor performances when

performing other operations (database transactions,
networking…) and freezes the UI
○ If the UI freezes for more than 5 secs it will be very very unpleasant

21

Multithreading

Android natively supports a multi-threading environment.

An Android application can be composed of multiple concurrent threads.

How to create a thread in Android?

● Threads and Runnables { what really happens under the hood }
● Coroutines (Kotlin only) { what is more convenient to use }

We also need to manage callbacks and/or allow message passing

22

Multithreading - Threads

Let us start with legacy Java Threads (here used in Kotlin).

Thread(
Runnable {

// Do your stuff… for example:
var counter = 1000
while (counter > 0) {

Thread.sleep(10)
counter = counter - 1

}
}).start()

Threads implement a Runnable, a SAM
interface that specifies a behavior in
the method run().

This piece of code executes the body
within a separate thread.

23

Multithreading - Threads

A thread pool is a managed collection of threads that runs tasks in parallel
from a queue. New tasks are executed on existing threads as those threads
become idle.
● Be sure to instantiate the pool only once in your application.
val executorService : ExecutorService = Executors.newFixedThreadPool(4)

● An ExecutorService (or an Executor implementing it) takes in input a Runnable

executorService.execute {
// Do your stuff…

}

24

The UI or main thread is in charge of dispatching events to the user interface
widgets, and of drawing the elements of the UI.

● Do not block the UI thread.
● Do not access the Android UI components from outside the UI thread.

QUESTION: How to update the UI components from worker threads?
Threads need to communicate!

Message passing

Multithreading - Threads

25

Message Passing like mechanisms for Thread communication in OS.

Message Loop → Queue of messages associated to a thread.
Handler → Object that processes incoming messages within a thread.
Message → Parcelable Object that can be sent/received by a thread.

Multithreading - Message Passing

Message
Loop

Handler

handleMessagesendMessage / postMessage

THREAD 1 (Sender) THREAD 2 (Receiver)

26

Receiver Side: use Looper and Handler objects

Multithreading - Message Passing

Runnable {
Looper.prepare() // Instantiate the message queue
val handler : Handler =

Handler(Looper.myLooper()!!) { msg ->
// Handle here the message

}
Looper.loop() // Have it ready for receiving

}

Threads not always have
loopers by default (use
HandlerThread)

If the receiver does not know
what to do upon receiving, but
still wants to receive messages,
then the handler can be empty.

val handler : Handler = Handler(Looper.myLooper()!!)

27

Receiver Side: use Looper and Handler objects

Multithreading - Message Passing

class LooperThread() : Thread("Custom Thread") {
lateinit var handler: Handler
override fun run() {

Looper.prepare() // Initialize the message queue
handler = object : Handler(Looper.myLooper()!!) {

override fun handleMessage(msg: Message){
// Handle the message
}

}
Looper.loop() // Have it ready for receiving

}
}

Threads not always have
loopers by default (use
HandlerThread)

If the receiver does not know
what to do upon receiving, but
still wants to receive messages,
then the handler can be empty.

28

Sender Side: obtain a reference to the receiver’s handler and send a message

Multithreading - Message Passing

val looperThread = LooperThread()
looperThread.start()

var message: Message = looperThread.handler.obtainMessage()
message.arg1 = 0 // Some custom body
looperThread.handler.sendMessage(message)

Send a message to be handled by handleMessage if receiver knows what to do

looperThread.handler.post {
// Orders for the receiver

}

Send a runnable if the sender knows what to instruct

29

The main usage for message passing is to pass the result of the thread
operation to the UI thread. Message loop is implicitly defined for the UI thread: if
you get it you can create an empty Handler and post task for the UI thread.

Multithreading - Message Passing

val mainHandler = HandlerCompat.createAsync(Looper.getMainLooper())
mainHandler.post{

// Run on UI thread
}

runOnUiThread {
// Run on UI thread

}

This has all been wrapped by the following:

30

“A coroutine is an instance of a suspendable computation. It is conceptually
similar to a thread, in the sense that it takes a block of code to run that works

concurrently with the rest of the code. However, a coroutine is not bound to any
particular thread. It may suspend its execution in one thread and resume in

another one.”

Coroutines can be thought of as light-weight threads, but there is a number of
important differences that make their real-life usage very different from threads.

https://kotlinlang.org/docs/coroutines-basics.html

Multithreading - Coroutines

https://kotlinlang.org/docs/coroutines-basics.html

31

● Coroutine Scope
○ An environment that keeps track of the coroutines it creates and offers

ways to interact with them (cancel, suspend, resume…). It launches them,
but does not run them.

● Coroutine Context
○ A set of metadata about the coroutine, including the dispatcher, the

element that runs the coroutine in a specific type of thread.
● Coroutine Job

○ A handle to a coroutine, it basically stores a reference to a running
coroutine into a variable.

Multithreading - Coroutines

32

Create a coroutine with launch for legacy code (the caller knows what to put in a
coroutine).

Multithreading - Coroutines

/* Create a scope that fires coroutines in the main (context) thread by default */
val scope: CoroutineScope = CoroutineScope(Dispatchers.Main)

fun myBlockingFunction () { /* Blocking Code */ }

/* launch a coroutine in a different context (IO threads) - you can omit it */
val job: Job = scope.launch (Dispatchers.IO) {

delay(100) // function that blocks the coroutine, not the thread
myBlockingFunction()

}

One problem here is that the caller needs to know what is blocking…

33

● Dispatchers.Main - Use this dispatcher to run a coroutine on the main
Android thread. This should be used only for interacting with the UI and
performing quick work. Examples include calling suspend functions, running
Android UI framework operations, and updating LiveData objects.

● Dispatchers.IO - This dispatcher is optimized to perform disk or network I/O
outside of the main thread. Examples include using the Room component,
reading from or writing to files, and running any network operations.

● Dispatchers.Default - This dispatcher is optimized to perform CPU-intensive
work outside of the main thread. Example use cases include sorting a list
and parsing JSON.

Multithreading - Coroutines

34

Create a main-safe function, the caller does not need to know where it runs.

Multithreading - Coroutines

/* The suspend keyword forces the caller to call the function within a coroutine */
suspend fun myBlockingFunction (): String {

return withContext(Dispatchers.IO) { /* Blocking Code */ }
}

/* launch a coroutine in the main thread */
scope.launch {

delay(100)
val result = myBlockingFunction() // execute it in a IO thread and wait here until it finishes
/* Do stuff with result in the main thread */

}

This setup makes the main thread suspend the coroutine until the IO thread has
returned, without blocking the UI. It is good for synchronous operations.

35

Within a coroutine you can change the context if you need to update the UI.

Multithreading - Coroutines

/* launch a coroutine in the main thread */
scope.launch {

withContext(Dispatchers.IO) { /* Do your database operations */ }
withContext(Dispatchers.Main) { /* Update UI */ }

}

Alternatively, you can update your LiveData from a worker thread…
scope.launch {

withContext(Dispatchers.IO) {
/* Do your database operations */
myLiveData.postValue(result) // Always watch out for race conditions though…

}
}

36

Similar to Javascript promises, you can use async calls without suspending…

Multithreading - Coroutines

suspend fun myBlockingFunction () { withContext(Dispatchers.IO) { /* Blocking Code */ } }

async and await can be called only within a coroutine scope…
scope.launch {

val deferred: Deferred<Unit> =
async { myBlockingFunction() }

/* CODE BLOCK A */
deferred.await()
/* CODE BLOCK B */

}

The coroutine does not suspend upon calling
myBlockingFunction, it calls it
asynchronously, then executes CODE BLOCK
A, waits for myBlockingFunction to finish and
executes CODE BLOCK B.

You can use also awaitAll() on a list of async Deferreds for parallelization.

37

● Lightweight: You can run many coroutines on a single thread due to support
for suspension, which doesn't block the thread where the coroutine is
running.

● Fewer memory leaks: Use structured concurrency to run operations within a
scope.

● Built-in cancellation support: Cancellation is propagated automatically
through the running coroutine hierarchy.

Read the full documentation about coroutines at:
https://developer.android.com/kotlin/coroutines

Multithreading - Coroutines

https://developer.android.com/kotlin/coroutines

38

A Service is a component that can perform long-running operations in
background and does not provide a user interface.
Can be thought as the dual of an Activity.

● Activity → UI, can be disposed when it loses visibility
● Service → No UI, disposed when it terminates or when it is terminated by

other components

Declare it in the manifest

Services

<service android:name=".ExampleService" />

39

A Service provides only a robust environment where to host separate threads of
our application, but it is not a separate Thread… why should we use it then?

There are several reasons, but a very prominent one is:

Services

Because if nothing else holds the main thread (i.e. no
activity is running or stopped), then a Service is the

only component that can keep the main thread alive.

40

A Service is started when an application component starts it by calling
startService(Intent).

 Once started, a Service can run in background, even if the component that
started it is destroyed.

 Termination of a Service:
1. stopSelf() → self-termination of the service
2. stopService(Intent) → terminated by others
3. System-decided termination (i.e. memory shortage)

Services

41

Services

OnCreate()

OnStartCommand()

RUNNING

onDestroy()

OnCreate() executed
only once when the
Service is created.

startService()

startService()

startService() might cause the execution of
OnCreate+OnStartCommand, or only of
OnStartCommand, depending whether the Service is
already running …

stopService()
stopSelf()

42

Services

Tell what we should do if the Service is killed by the system through the return
flag in the onStartCommand():
● START_STICKY: recreate the service with a null intent
● START_NOT_STICKY: do not bother recreating it
● START_REDELIVER_INTENT: recreate the service and resent the same intent

class MyService: Service() {
 override fun onBind(intent: Intent?): IBinder? { /* Not bound */ return null }
 override fun onStartCommand(intent: Intent?, flags: Int, startId: Int): Int {

super.onStartCommand(intent, flags, startId)
 /* Do your stuff */
 return START_STICKY
 }
}

43

Services

Bound Services: Services can either be started
with startService() or bound to a component
through bindService(): in the second case the
binding lifecycle takes over.
● Bound services end when all the bound

components unbind
● These two lifecycles are not separated: a

component can bind to a started service.
○ in such case unbinding kills, stopping does

not.

44

Services

Service
Component

(can be Activity, Service or
ContentProvider)

IBinder

IBinder onBind()

ServiceConnection

bindService(Intent, ServiceConnection, flags)

onServiceConnected(ComponentName, IBinder)

When the connection is established,
the Service will call the
onServiceConnected and pass a
reference of the IBinder to the
Component.

45

Services

When creating a Service, an IBinder must be created to provide an Interface that
clients can use to interact with the Service … HOW?

1. Extending the Binder class (local Services only)
○ Extend the Binder class and return it from onBind()
○ Only for a Service used by the same application

2. Using the Android Interface Definition Language (AIDL)
○ Allow to access a Service from different applications.

46

Services

Example Service Side

class LocalService: Service() {

inner class SimpleBinder: Binder() {
fun getService(): LocalService { return this@LocalService }

}
private val binder = SimpleBinder()

override fun onBind(intent: Intent?): IBinder? { return binder }

fun apiFunction() { /* Stuff for clients */ }
}

47

Services

Example Client Side (e.g. from an Activity)

private lateinit var localService: LocalService
val serviceConnection: ServiceConnection = object : ServiceConnection{

override fun onServiceConnected(className: ComponentName, service: IBinder) {
 localService = (service as LocalService.SimpleBinder).getService()

}
 override fun onServiceDisconnected(name: ComponentName?) { /* Whatever */ }
}

bindService(
Intent(this, LocalService::class.java), serviceConnection, BIND_AUTO_CREATE
)

/* Now we can call localService.apiFunction() */

48

Services

Foreground Services: A Foreground Service is a service that is continuously
active in the Status Bar, and thus it is not a good candidate to be killed in case of
low memory. Its Notification appears between ONGOING pendings.

To create a Foreground Service:
● Create a Notification object
● Call ServiceCompat.startForeground(id, notification) within

onStartCommand()
● Call stopForeground() to bring it to the background.
Note that you need FOREGROUND_SERVICE permission

49

Broadcast Receivers

A Broadcast Receiver is a component that is activated only when specific
events occur (i.e. SMS arrival, phone call, etc).

The Event is an Intent

Registration of the Broadcast Receiver to the event using an IntentFilter:
● Registration through XML code (Manifest-declared) as you would do for

Activities and Services
● Registration through Java/Kotlin code (Context-declared)

○ In this case it listens for events only within a context.

50

Broadcast Receivers

● Single-state component …

● onReceive() is invoked when the
registered event occurs

● After handling the event, the
Broadcast Receiver is destroyed.

● It runs in the Main Thread by default.

OnReceive ()

BROADCAST RECEIVER LIFETIME

EVENT

51

Broadcast Receivers

● Registration in the context code:

val broadcastReceiver =
object: BroadcastReceiver() {
override fun onReceive

(context: Context?, intent: Intent?) {
/* Do your stuff */

}
}

override fun onResume() {
super.onResume()
registerReceiver

(broadcastReceiver, IntentFilter(
"android.provider.Telephony.SMS_RECEIVED
"))

}

override fun onPause() {
super.onPause()
unregisterReceiver(broadcastReceiver)

}
This example lacks permission
requests for brevity

52

Broadcast Receivers

● Registration in the manifest:
 <application>

<receiver class=“SMSReceiver”>
<intent-filter>

<action android:value=“android.provider.Telephony.SMS_RECEIVED” />
</intent-filter>

</receiver>
</application>

The receiver here can be activated even it the app is closed, but onReceive must
be short enough! In this case it is always better to:
● Run the BroadcastReceiver within a sticky service
● Start a

53

Broadcast Receivers

How to send Intents for broadcast Receivers?

● sendBroadcast(intent: Intent)
○ No order of reception is specified for all registered receivers

● sendOrderedBroadcast(intent: Intent, permit: String)
○ reception order given by the android:priority field

sendBroadcast() and startActivity() work on different contexts!

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

