
Architectural Components

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Architectural Design Patterns
○ MVC
○ MVP
○ MVVM

● ViewModel
● Observables
● LiveData
● Comparison between app

architectures

2

3

Architectural Design Patterns

In time, the development in Android has changed quickly

● Lack of architectural design patterns
● Different native languages
● Hybrid technologies
● Handling bindings between views and controllers is tedious
● A lot of boilerplate code…
● Adapting legacy stuff instead of redesigning from scratch

4

Architectural Design Patterns

Furthermore, well, you’re on a smartphone, which means a lot
more hassle:
● For example, you share a photo in your favorite social

networking app
○ The app triggers a camera intent. The Android OS then launches a camera app to handle the request. So you

leave the first app...
○ The camera app might trigger other intents, like launching the file chooser, which may launch yet another

app.
○ Eventually, the user returns to the social networking app and shares the photo.
○ At any point, the user could be interrupted by a phone call or notification. After acting this, the user should

resume the photo sharing process...
○ Keep in mind that the OS might kill some processes when needed

5

Architectural Design Patterns

Given such condition, we need a solid architectural decoupling
that ensures component are not depending on each other.

● Model-View-Controller (MVC)

● Model-View-Presenter (MVP)

● Model-View-ViewModel (MVVM) Ap
p

Co
m

pl
ex

ity

De
co

up
lin

g

6

Architectural Design Patterns

● Model
○ The application data, with no knowledge about its

interface. Handles the domain logic, with connection to
databases and network layers.

● View
○ The UI, providing the means for visualizing the data in the

model and to handle the interactions with the user.
What about the business logic?

7

Architectural Design Patterns

We will see the differences hands-on with a tiny sample app.

Credits go to Master Coding https://youtu.be/v4PbYeweaO4?si=gu6yWOw0hPDfP2t2

This app simply simulates
someone who wants a bottle of
water. The activity_main.xml
contains just a Button and a
TextView. When the button is
pressed, the TextView is populated.

https://youtu.be/v4PbYeweaO4?si=gu6yWOw0hPDfP2t2

8

Architectural Design Patterns

class Model {
 private val data: String = "Water"

 fun getData(): String {
 return "Bottle of ${data}!"
 }
}

We are going to work with a very simple Model
class, which simulates our DB and some
placeholder domain logic.

9

Model-View-Controller

“You go to a shop, you take the water from the fridge and the you go and pay for it.”

CONTROLLER MODELVIEW

Get Data

Update Layout Update Data

● Controller is the active part containing the business logic.
● Model and View are almost passive.
● Easy to test the Model because it has no dependence.

○ Controller and View are heavily tied.
● Old pattern, suitable for small projects

10

Model-View-Controller

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 val myModel: Model = Model()
 val textView = findViewById<TextView>(R.id.textView)
 val button = findViewById<Button>(R.id.button)
 button.setOnClickListener {
 textView.text = myModel.getData()
 }
 }
}

View: XML Layout file
Controller: Activity

Here, the coupling
between View and
Controller is very
evident as they are
almost the same thing.

Update Layout

11

Model-View-Presenter

“You go to a bar and ask for a bottle of water, then the waiter brings you the water.”

PRESENTER MODELVIEW
User Actions

Update Data

● View is the active part containing the business logic.
● Presenter acts as a mediator, 1-to-1 with the View
● Easy to test the Model because of no dependence.
● Kind of easy to test the Presenter+Model if using an interface.
● Suitable for medium-sized projects

Get Data
INTERFACE

12

Model-View-Presenter

class Presenter (val appView: AppView) {
 private lateinit var model: Model
 private fun getModel(): Model {
 if (! ::model.isInitialized)
 model = Model()
 return model // Singleton pattern
 }

 fun getDataFromModel() {
/* Call the interface and not the View */

 appView.onGetData(getModel().getData())
 }
}

interface AppView {
 fun onGetData(data: String) {
 /* By default does nothing */
 }
}

If using an interface, the Presenter
just assumes that there is a View
implementing it, with no clue about
who it is. If not, then it is again a
hard coupling.

13

Model-View-Presenter

class MainActivity : AppCompatActivity(), AppView {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 val myPresenter: Presenter = Presenter(this)
 val button = findViewById<Button>(R.id.button)
 button.setOnClickListener { myPresenter.getDataFromModel() }
 }

 override fun onGetData(data: String) {
 val textView = findViewById<TextView>(R.id.textView)
 textView.text = data
 }
}

View: Activity
Presenter: Presenter

Here, the coupling
between View and
Presenter happens in
one direction, even
though one presenter
needs exactly one View
(because of its
constructor).

14

Model-View-ViewModel

MVVM is the recommended architectural
design pattern for Android apps and it is
industry-recognized.

Before delving into its architectural
details we will need to learn two
primitives:
● ViewModel
● Observables and LiveData

Today our model will just be the “Repository”
leaving the rest to the future…

15

ViewModel

A ViewModel is a component that stores UI-related
data in a Lifecycle-aware way.
● It helps surviving seamlessly configuration changes
● If the activity is destroyed and re-created there is no

need for saving instance state every time (which is
instead suitable only for small data).

● Separates view data ownership (ViewModel) from
UI controller logic (View).
○ One ViewModel per UI controller
○ Multiple UI controller per ViewModel

16

ViewModel

class MyViewModel: ViewModel() {
 private lateinit var value : String
 fun getValue(): String {
 /* Do stuff to retrieve the value */
 return value
 }
}

First extend the ViewModel helper class..
● A ViewModel is scoped to the lifecycle of

the object passed to the
ViewModelProvider (this request makes
it sort of singleton).

● A ViewModel never references elements
of the View, the reference should be
one-way only.

val myViewModel: MyViewModel =
ViewModelProvider(this).get(MyViewModel::class.java)

textView.text = myViewModel.getValue()

17

LiveData

val firstName =
ObservableField<String>()

val age =
ObservableInt()

val items =
ObservableArrayList<String>()

LiveData are based on the concept of Observables
● Observables are data classes that notify when changes on the observed data

occur.
● they wrap existing data types

18

LiveData

The Observable object has a hidden list.
● Everytime another object subscribes to

changes it is added to the list.
● Everytime a changes occur in the observed

data field, all members of the list are
notified by calling their callback function.

LiveData are Observables based on the
concept of LifeCycle Awareness
● Let’s leave observables for a second and see what

these are…

19

LiveData
class MyObserver : DefaultLifecycleObserver {
 override fun onResume

(owner: LifecycleOwner) {
 /* Do stuff onResume */
 }

 override fun onPause
(owner: LifecycleOwner) {

/* Do stuff onPause */
 }
}

myLifecycleOwner.getLifecycle().
addObserver(MyObserver())

You can implement LifeCycle

awareness by implementing

an Observer to the LifeCycle:

Useful when the component

needs to react to lifecycle

changes.

20

LiveData

The function getLifecycle() can be called by a LifeCycleOwner
an object implementing the LifeCycleOwner interface, i.e. it has a
Lifecycle (Activities, Services, Fragments...)

You can use powerful calls such as
lifecycle.getCurrentState().isAtLeast(STARTED)

You can create a class that implements the LifeCycleOwner interface

21

LiveData

LiveData are lifecycle-aware observable components that only notify
subscribers that are in active state (i.e. RESUMED or STARTED).
● Useful for activities and fragments because they can observe data and not

worry about their state.
● First of all, design your LiveData to contain the actual data (just like the

observer, it is a wrapper).
● MutableLiveData can change (it has a setter), LiveData cannot
● Instantiate them in your ViewModel
val name: MutableLiveData<String> = MutableLiveData()

22

LiveData

LiveData are typically instantiated in your ViewModel, which means that the
observer is located elsewhere (i.e. the Activity). It is typically good practice to
return an immutable or a mutable LiveData to the class that observes:

class MyViewModel() : ViewModel() {

/* Instantiated only the first time it is called */
private val name: MutableLiveData<String> by lazy { MutableLiveData<String>() }

/* Returning an immutable reference to the observer */
fun getNameImmutable(): LiveData<String> { return name }

}

23

LiveData

Observer side:
You may want to start observe your LiveData in the Activity onCreate().
LiveData delivers updates to active observers when data changes.

val myViewModel: MyViewModel =
ViewModelProvider(this).get(MyViewModel::class.java)

myViewModel.getNameImmutable().observe(this, Observer { newValue ->
textView.text = newValue

})

Observer is a SAM interface with the method onChanged(), called every time
name changes and as soon as observe is called if there is a value already.

LifeCycleOwner

24

LiveData
LiveData values are updated by using:
● setValue() if called from the main thread
● postValue() if called from a worker thread

name.postValue("John Doe")

● Remember that setValue() and postValue() are only callable against a
MutableLiveData.

● If you want to pass LiveData to a class not in charge of modifying it, then
only pass LiveData type.

● Typically ViewModel updates LiveData, Activity only observes
○ or calls a method in the ViewModel to update the LiveData

Change events

25

Model-View-ViewModel

“You go to a vending machine and pay for a bottle of water, then the machine gives
back the water.”

VIEWMODEL MODELVIEW
User Actions,

Observe

Update Data

● View is the active part containing the business logic.
● ViewModel contains LiveData, 1-to-many with the View
● Easy to test the Model because of no dependence.
● Easy to test the ViewModel because of no dependence.
● Suitable for large-sized projects

Get Data

26

Model-View-ViewModel

class MyViewModel() : ViewModel() {

private val model: Model by lazy { Model() } // Singleton
private val _liveValue: MutableLiveData<String> by lazy

{ MutableLiveData<String>() }
/* Casts the private MutableLiveData with an immutable one */
val liveValue: LiveData<String>

get() = _liveValue

fun getDataFromModel() {
/* Set the LiveData value, no matter who is observing */
_liveValue.value = (model.getData())

}
}

View: Activity
ViewModel: ViewModel

The ViewModel does
not even know if there
is a View, or if there are
multiple ones.

It just keeps updated its
LiveData, no matter
who is observing.

27

Model-View-ViewModel

class MainActivity : AppCompatActivity(){

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
val textView = findViewById<TextView>(R.id.textView)
val myViewModel: MyViewModel =

ViewModelProvider(this)[MyViewModel::class.java]
myViewModel.liveValue.observe(this)

{ newValue -> textView.text = newValue }
val button = findViewById<Button>(R.id.button)
button.setOnClickListener

{ myViewModel.getDataFromModel() }
 }
}

View: Activity
ViewModel: ViewModel

The ViewModel does
not even know if there
is a View, or if there are
multiple ones.

It just keeps updated its
LiveData, no matter
who is observing.

Change events

28

Comparison

VIEWMODEL MODELVIEW
User Actions,

Observe

Update Data

Get Data

Update Layout
PRESENTER MODELVIEW

User Actions

Update Data

Get Data
INTERFACE

CONTROLLER MODELVIEW

Get Data

Update Layout Update Data

MVP

MVC

MVVM

MVC MVP MVVM

Active Part Controller View View

Testability M only M-P with mock View M-VM unconstrained

View Constraints Depends on C Depends on P iface Not dependent

Suitability Small projects Medium projects Large projects

Change events

29

Comparison

VIEWMODEL MODELVIEW
User Actions,

Observe

Update Data

Which one should you use?
as usual it depends, MVVM is the recommended pattern by Android. However,
for a small project, MVC is much more immediate. If you work in team MVP is
good, but MVVM offers easier extensibility in the future and less coupling
between teams…

Get Data

Update Layout
PRESENTER MODELVIEW

User Actions

Update Data

Get Data
INTERFACE

CONTROLLER MODELVIEW

Get Data

Update Layout Update Data

MVP

MVC

MVVM

30

Others

LiveData and ViewModel are part of a bigger chunk of novelties that we will not
explore. Here are the pointers:
For a tighter coupling between View elements and the UI controller we can also
use:
● Data Binding

○ https://developer.android.com/topic/libraries/data-binding
● View Binding

○ https://developer.android.com/topic/libraries/view-binding
They both help in interacting declaratively with views (eliminating findViewById).

https://developer.android.com/topic/libraries/data-binding
https://developer.android.com/topic/libraries/view-binding

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

