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●  An Android application can be composed of multiple 
Activities 

●  Each activity must be declared in the AndroidManifest.xml … 
unless using an external activity

Add a child element to the <application> tag:

Reminder about Activities…

<application>
<activity android:name=".MainActivity" />
<activity android:name=”.ActivityTwo" />

</application>
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Reminder about Activities…

class ActivityTwo : AppCompatActivity() {
   override fun 

onCreate(savedInstanceState: Bundle?){
        super.onCreate(savedInstanceState)

setContentView
(R.layout.activity_two)

    }
}

class MainActivity : AppCompatActivity() {
   override fun 

onCreate(savedInstanceState: Bundle?){
        super.onCreate(savedInstanceState)

setContentView
(R.layout.activity_main)

    }
}

How to handle an app with more than one activity? How to 
navigate between them?
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● Call a component from another component
● Possible to pass data between components

○ Components: Activities, Services, Broadcast receivers

● Something like: “Android, please do that with this data”
● Reuse already installed applications and components 

It’s a message object

Intent: facility for late run-time binding between 
components in the same or different applications. 

Overview on Intents
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We can think of an “Intent” object as a message 
containing a bundle of information. 
● Information of interests for the receiver (e.g. 

name)
● Information of interests for the Android system 

(e.g. category).

Component Name

Action Name

Data

Category

Extra Flags

Structure
of an Intent

Overview on Intents

val intent: Intent = Intent()



Overview on Intents
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INTENT TYPES

EXPLICIT IMPLICIT

The developer knows the target 
receiver component explicitly

The developer knows what the 
target receiver component must do



Intent Description: Explicit
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INTENT TYPES

EXPLICIT IMPLICIT

The target receiver is specified
through the Component Name
e.g. Used to launch specific 
Activities

The target receiver is specified
by data type/names.

The system chooses the receiver
that matches the request.
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Component that should handle the intent (i.e. the 
receiver).
● It is optional (set only for Explicit intents) Component Name

Action Name

Data

Category

Extra Flags

intent.setComponent(ComponentName(
"com.example.MyApplication",
"com.example.MyApplication.MyActivity")

)

Intent Description: Explicit
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Component that should handle the intent (i.e. the 
receiver).
● It is optional (set only for Explicit intents) Component Name

Action Name

Data

Category

Extra Flags

intent.setComponent(ComponentName(
this,
MyActivity::class.java)

)

Intent Description: Explicit
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How to navigate to a new activity within the same application:

Intent Description: Explicit

val intent: Intent = Intent()
intent.component = ComponentName(this, ActivityTwo::class.java)
startActivity(intent)

… or simply:

val intent: Intent = Intent(this, ActivityTwo::class.java)
startActivity(intent)

With startActivity we are explicitly saying that the component handling the 
intent must be an Activity



Intent Description: Implicit
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INTENT TYPES

EXPLICIT IMPLICIT

The target receiver is specified
through the Component Name
e.g. Used to launch specific 
Activities

The target receiver is specified
by data type/names.

The system chooses the receiver
that matches the request.
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● Implicit Intents do not name a target (component name is 
left blank) 

● When an Intent is launched, Android checks out which 
Component can handle the Intent
○ If one is found, such component is started
○ If two or more are found, the user must choose which one

● Binding does not occur at compile time, nor at install time, 
but at run-time (late run-time binding)

Intent Description: Implicit
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● Activity A fires an Intent
● Android System looks for 

suitable activities by looking 
at the manifests of all apps

● When one is found, it is 
called

● If multiple are found, a 
choice dialog is displayed 

Intent Description: Implicit
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A String naming the action to be performed
● Mandatory for Implicit intents
● Can be defined by the developer or one of the 

many predefined ones
Component Name

Action Name

Data

Category

Extra Flags

intent.action = Intent.ACTION_EDIT

intent.action = 
"com.example.MyApplication.MY_ACTION"

Intent Action
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You can use Actions to determine what the called Activity must do. 
Simple examples:

● ACTION_VIEW is called when the receiving Activity shows 
something to the user (e.g. a photo in the gallery, an address on 
the map).

● ACTION_SEND is called when the receiving Activity is able to send 
the data received through the Intent using some dedicated 
channel (e.g. an e-mail or a message in a social app).

Intent Action



Predefined actions 
(https://developer.android.com/reference/android/content/Intent)
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Action Name Description
ACTION_EDIT Display data to edit
ACTION_MAIN Start as a main entry point, does not expect to receive data.
ACTION_PICK Pick an item from the data, returning what was selected.
ACTION_VIEW Display the data to the user
ACTION_SEARCH Perform a search
ACTION_SEND Send some data through another component

Intent Action

https://developer.android.com/reference/android/content/Intent


Predefined actions 
(https://developer.android.com/reference/android/content/Intent)
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Action Name Description
ACTION_IMAGE_CAPTION Open the camera and receive a photo
ACTION_VIDEO_CAPTION Open the camera and receive a video

ACTION_DIAL Open the phone app and dial a phone number
ACTION_SENDTO Send an email (email data contained in the extra)
ACTION_SETTINGS Open the system setting
ACTION_WIRELESS_SETTINGS Open the system setting of the wireless interfaces

ACTION_DISPLAY_SETTINGS Open the system setting of the display

Intent Action

https://developer.android.com/reference/android/content/Intent
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Data passed from the caller to the called 
Component.
● Def. of the data (URI) - setData()
● Type of the data (MIME type) - setType()

○ Multipurpose Internet Mail Extension

Component Name

Action Name

Data

Category

Extra Flags

intent.data = "https://www.unibo.it/"
intent.type = "text/html"

Intent Data

Do not call setData() and setType() if you need to set both because they 
nullify each other: call setDataAndType()
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Data is specified by a name and/or type

name: Uniform Resource Identifier (URI):
scheme://host:port/path 
● tel://+1-330-555-0125
● content://contacts/people
● http://www.cs.unibo.it/

Intent Data

An Uri starting with 
“content” means that 
the data is stored on 
the device.
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Data is specified by a name and/or type

type: MIME (Multipurpose Internet Mail Extensions)-type
Composed by two parts: a type and a subtype

image/gif image/jpeg image/png image/tiff
text/html text/plain text/javascript text/css
video/mp4 video/mpeg4 video/quicktime video/ogg

application/vnd.google-earth.kml+xml

Intent Data
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A String that gives additional information about the 
action to execute.
● addCategory()
● for special intents that have additional features 

to consider

Component Name

Action Name

Data

Category

Extra Flags

intent.addCategory(Intent.CATEGORY_BROWSABLE)

Intent Category



Predefined categories 
(https://developer.android.com/reference/android/content/Intent)
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Intent Category

Category Name Description
CATEGORY_HOME The activity displays the HOME screen.
CATEGORY_LAUNCHER The activity is listed in the top-level application 

launcher, and can be displayed.

CATEGORY_PREFERENCE The activity is a preference panel.
CATEGORY_BROWSABLE The activity can be invoked by the browser to 

display data referenced by a link.

https://developer.android.com/reference/android/content/Intent
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Additional information that should be delivered to 
the handler (e.g. parameters). 
● Key-value pairs

○ putExtras()
○ getExtras()

●

Component Name

Action Name

Data

Category

Extra Flags

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra

(Intent.EXTRA_EMAIL,"federico.montori2@unibo.it")

Intent Extras
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Extras can be predefined (for most Actions there are defined 
extras that are expected)

○ e.g. for ACTION_SEND you can specify the recipient with EXTRA_EMAIL and the subject 
with EXTRA_SUBJECT

Intent Extras

https://developer.android.com/reference/android/content/Intent

You can specify your own as long as the package is specified
const val EXTRA_BASS = "com.example.MyApplication.BASS_NOTE"

https://developer.android.com/reference/android/content/Intent


26

A bitwise OR of Integers containing additional 
information that instructs Android how to launch a 
component, and how to treat it after executed. Component Name

Action Name

Data

Category

Extra Flags

intent.flags = 
Intent.FLAG_ACTIVITY_NEW_TASK or 
Intent.FLAG_ACTIVITY_NO_ANIMATION

Intent Flags
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Implicit intents are very useful to re-use code 
and to launch external applications … how do we 
know who responds?

Intent Resolution: sender side

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra(Intent.EXTRA_TEXT, "Hello World!")
intent.type = "text/plain"
if (intent.resolveActivity(packageManager) != null)

startActivity(intent)
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We can force the generation of the chooser even 
if the user selected a default choice. 

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra(Intent.EXTRA_TEXT, "Hello World!")
intent.type = "text/plain"
val chooser = 

Intent.createChooser(intent, "You HAVE to choose!")
if (intent.resolveActivity(packageManager) != null)

            startActivity(chooser)

Intent Resolution: sender side
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How to declare which intents a component is able to handle?
<intent-filter> tag in AndroidManifest.xml
This activity can capture intents with action com.example.ACTION_ECHO:

Intent Resolution: receiver side

<activity
      android:name=".MainActivity"

android:exported="true">
<intent-filter>

<action android:name="com.example.ACTION_ECHO" />
</intent-filter>

</activity>

exported indicates whether the activity can 
be invoked by another application
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It can be much more articulated:

● If you specify more than one intent-filter →

○ Your activity should handle intent received differently (e.g. view or edit an image) 

as they are different entry points to the activity.

● If you specify more than one instance of the same tag (e.g. more than one action) 

within the same intent-filter →

○ Your activity should handle each combination of these.

Intent Resolution: receiver side
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The intent resolution process resolves the Intent-Filter that can handle a given Intent.

Three tests to be passed:

●  Action field test

●  Category field test

●  Data field test

If the Intent-filter passes all the three test, then it is selected to handle the Intent.

Intent Resolution: receiver side
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ACTION Test:  An intent filter always needs to specify at least one action. The action 

specified in the Intent must match one of the actions listed in the filter.

● If the filter does not specify any action → FAIL

● An intent that does not specify an action → SUCCESS as as long as the filter 

contains at least one Action.

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />

</intent-filter>
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CATEGORY Test:  An intent filter for Activities always needs to specify at least one 

category. Every category in the Intent must match a category of the filter.

● If the category is not specified in the Intent, Android assumes it is 

CATEGORY_DEFAULT → the filter must include this category to handle the intent.

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
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DATA Test: The URI of the intent is compared with the parts of the URI mentioned in 

the filter (this part might be incomplete or using wildcards such as * ).

● Both URI and MIME-types are compared (4 different sub-cases).

● All parts specified by the filter need to be matched by the Intent (not vice-versa).

●

●

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/*" />

</intent-filter>
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 Activities can be invoked to return results (e.g. pick an image from the gallery)

 Sender side: invoke the startActivityForResult (deprecated)

Intent with results

val ACTIVITY_CODE = 0
val intent: Intent = Intent(this, ActivityPrefix::class.java)
startActivityForResult(intent, ACTIVITY_CODE)
…
override fun onActivityResult

(requestCode: Int, resultCode: Int, data: Intent?) {
       // Invoked when SecondActivity completes its operations
}
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 Activities can be invoked to return results (e.g. pick an image from the gallery)

 Receiver side: invoke the setResult()

Intent with results

val intent = getIntent() // in Kotlin this line is not even needed
setResult(RESULT_OK, intent)
intent.putExtra("response", "whatever you wanted")
finish() // The result is not returned until finish() is called
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 Since Androidx, startActivityForResult() has been wrapped by 

Activity Result API: https://developer.android.com/training/basics/intents/result

● To overcome cases when the calling activity is destroyed and recreated while the 
called one is running.

● With the Activity Result API basically the callback is registered whenever the 
caller is recreated, decoupling it from the call itself.

● A whole set of new callback functions

Intent with results

https://developer.android.com/training/basics/intents/result


Registering can be called when declaring state variables
● GetContent is a default contract constructor that is used to 

return…content! In this case you get back a Uri from the called Activity
○ The contract specifies the type of input and the type of output
○ You can create your own contracts

● registerForActivityResult finally returns a launcher that we can fire

38

Intent with results

val mLauncher: ActivityResultLauncher<String> = 
registerForActivityResult(

ActivityResultContracts.GetContent(),
ActivityResultCallback<Uri?>() { uri: Uri? -> /* Handle the Uri */ }

)



Fire it by passing in the data type that you want the user to choose from 
(following this example, you’d probably open the gallery).
● There are several default contracts…

○ https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts 

● What if I want to use it the “classic” way (no need of a contract)?
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Intent with results

val mLauncher: ActivityResultLauncher<Intent> = 
registerForActivityResult(ActivityResultContracts.StartActivityForResult())

{ result: ActivityResult ->
        if (result.resultCode == RESULT_OK) { intent = result.data } }

mLauncher.launch(Intent(this, ActivityPrefix::class.java))

mLauncher.launch("image/*")

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts
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Intent with results
/* Creating a custom contract… */
class PickRingtone : ActivityResultContract<Int, Uri?>() {
    override fun createIntent(context: Context, ringtoneType: Int) =
        Intent(RingtoneManager.ACTION_RINGTONE_PICKER).apply {
            putExtra(RingtoneManager.EXTRA_RINGTONE_TYPE, ringtoneType)
        }

    override fun parseResult(resultCode: Int, result: Intent?) : Uri? {
        if (resultCode != Activity.RESULT_OK) {
            return null
        }
        return result?.getParcelableExtra(RingtoneManager.EXTRA_RINGTONE_PICKED_URI)
    }
}



If your app offers functionality that might require access to restricted 
data or restricted actions, you need to ask permissions. 
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Permissions have 
seen changes in the 
history of Android… 

Android Permission System



Always declare them in the manifest:

Starting from 6.0
● User can only grant a subset of the permission set
● User can revoke permission after installing the app
● Declare them in the manifest and check if the permission is granted
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Android Permission System

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />



Request the permission using the Activity Result API for a solid 
experience. The launcher should look like this:
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Android Permission System

    val requestPermissionLauncher = registerForActivityResult(
        ActivityResultContracts.RequestPermission()
        ) { isGranted: Boolean ->
            if (isGranted) {
                // Permission is granted.
            } else {
                // Permission is denied.
            }
        }

You can still use separately, 
although obsolete:
● requestPermission()
● onRequestPermissionsResult()



Request the permission:
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Android Permission System

val REQUEST_CODE = 0
when {

ContextCompat.checkSelfPermission(this, 
android.Manifest.permission.ACCESS_COARSE_LOCATION

) == PackageManager.PERMISSION_GRANTED -> {
                // Permission is already granted.

}
ActivityCompat.shouldShowRequestPermissionRationale(

this, android.Manifest.permission.ACCESS_COARSE_LOCATION) -> {
// Show an explanation.

}
else -> { requestPermissionLauncher.launch(

Manifest.permission.REQUESTED_PERMISSION) } }



A View that displays web pages, including simple browsing methods 
(history, zoom in/out/ search, etc).
It is the container for Capacitor Hybrid apps..

Main methods: 
● loadUrl(url) → load the HTML page at url
● loadData(data, mimeType, encoding) → load the HTML page 

contained in data
45

WebView



It needs android.permission.INTERNET
(one of the few that does not need runtime 
permissions)
● All it does is pretty much showing the 

content of a Web page. It’s NOT a 
browser. 

● Useful when you quickly need content 
that is always up to date.

● In some case better than getting data, 
parsing and displaying in a layout. 46

WebView



It is possible to modify the visualization options of a WebView through the 
WebSettings class.
Some options:
● setJavaScriptEnabled(boolean)
● setBuildInZoomControls(boolean)
● setDefaultFontSize(int)

Also, bear in mind that cleartext data is not allowed by default. If you really 
need it then add to your manifest (application tag):
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WebView

android:usesCleartextTraffic="true"



Override the behavior for which links in the WebView open in the WebView 
(they in fact don’t throw an intent) with a WebViewClient
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WebView

webView.webViewClient = object: WebViewClient() {
            override fun shouldOverrideUrlLoading(
                view: WebView?,
                request: WebResourceRequest?
            ): Boolean {
                if (request?.url?.host == Uri.parse(WEBSITE).host) {
                    // This is my website, let the webView handle it
                    return false
                } else return super.shouldOverrideUrlLoading(view, request)
            }
        }



By default, the WebView UI does not include any navigation button 
…However, callbacks methods are defined:

● public void goBack()
● public void goForward()
● public void reload()
● public void clearHistory()
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WebView

override fun onKeyDown
(keyCode: Int, event: KeyEvent?): Boolean {
/* Is there a page in the history? */

if (keyCode == KeyEvent.KEYCODE_BACK &&
initialized &&
webView.canGoBack()) {

webView.goBack()
return true

} else return super.onKeyDown(keyCode, event)
}



Questions?

federico.montori2@unibo.it
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