
Intents & Permissions

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Overview on Intents
● Intent description
● Explicit Intents
● Implicit Intents
● Intent resolution
● Intent with results
● Permissions

2

3

● An Android application can be composed of multiple
Activities

● Each activity must be declared in the AndroidManifest.xml …
unless using an external activity

Add a child element to the <application> tag:

Reminder about Activities…

<application>
<activity android:name=".MainActivity" />
<activity android:name=”.ActivityTwo" />

</application>

4

Reminder about Activities…

class ActivityTwo : AppCompatActivity() {
 override fun

onCreate(savedInstanceState: Bundle?){
 super.onCreate(savedInstanceState)

setContentView
(R.layout.activity_two)

 }
}

class MainActivity : AppCompatActivity() {
 override fun

onCreate(savedInstanceState: Bundle?){
 super.onCreate(savedInstanceState)

setContentView
(R.layout.activity_main)

 }
}

How to handle an app with more than one activity? How to
navigate between them?

5

● Call a component from another component
● Possible to pass data between components

○ Components: Activities, Services, Broadcast receivers

● Something like: “Android, please do that with this data”
● Reuse already installed applications and components

It’s a message object

Intent: facility for late run-time binding between
components in the same or different applications.

Overview on Intents

6

We can think of an “Intent” object as a message
containing a bundle of information.
● Information of interests for the receiver (e.g.

name)
● Information of interests for the Android system

(e.g. category).

Component Name

Action Name

Data

Category

Extra Flags

Structure
of an Intent

Overview on Intents

val intent: Intent = Intent()

Overview on Intents

7

INTENT TYPES

EXPLICIT IMPLICIT

The developer knows the target
receiver component explicitly

The developer knows what the
target receiver component must do

Intent Description: Explicit

8

INTENT TYPES

EXPLICIT IMPLICIT

The target receiver is specified
through the Component Name
e.g. Used to launch specific
Activities

The target receiver is specified
by data type/names.

The system chooses the receiver
that matches the request.

9

Component that should handle the intent (i.e. the
receiver).
● It is optional (set only for Explicit intents) Component Name

Action Name

Data

Category

Extra Flags

intent.setComponent(ComponentName(
"com.example.MyApplication",
"com.example.MyApplication.MyActivity")

)

Intent Description: Explicit

10

Component that should handle the intent (i.e. the
receiver).
● It is optional (set only for Explicit intents) Component Name

Action Name

Data

Category

Extra Flags

intent.setComponent(ComponentName(
this,
MyActivity::class.java)

)

Intent Description: Explicit

11

How to navigate to a new activity within the same application:

Intent Description: Explicit

val intent: Intent = Intent()
intent.component = ComponentName(this, ActivityTwo::class.java)
startActivity(intent)

… or simply:

val intent: Intent = Intent(this, ActivityTwo::class.java)
startActivity(intent)

With startActivity we are explicitly saying that the component handling the
intent must be an Activity

Intent Description: Implicit

12

INTENT TYPES

EXPLICIT IMPLICIT

The target receiver is specified
through the Component Name
e.g. Used to launch specific
Activities

The target receiver is specified
by data type/names.

The system chooses the receiver
that matches the request.

13

● Implicit Intents do not name a target (component name is
left blank)

● When an Intent is launched, Android checks out which
Component can handle the Intent
○ If one is found, such component is started
○ If two or more are found, the user must choose which one

● Binding does not occur at compile time, nor at install time,
but at run-time (late run-time binding)

Intent Description: Implicit

14

● Activity A fires an Intent
● Android System looks for

suitable activities by looking
at the manifests of all apps

● When one is found, it is
called

● If multiple are found, a
choice dialog is displayed

Intent Description: Implicit

15

A String naming the action to be performed
● Mandatory for Implicit intents
● Can be defined by the developer or one of the

many predefined ones
Component Name

Action Name

Data

Category

Extra Flags

intent.action = Intent.ACTION_EDIT

intent.action =
"com.example.MyApplication.MY_ACTION"

Intent Action

16

You can use Actions to determine what the called Activity must do.
Simple examples:

● ACTION_VIEW is called when the receiving Activity shows
something to the user (e.g. a photo in the gallery, an address on
the map).

● ACTION_SEND is called when the receiving Activity is able to send
the data received through the Intent using some dedicated
channel (e.g. an e-mail or a message in a social app).

Intent Action

Predefined actions
(https://developer.android.com/reference/android/content/Intent)

17

Action Name Description
ACTION_EDIT Display data to edit
ACTION_MAIN Start as a main entry point, does not expect to receive data.
ACTION_PICK Pick an item from the data, returning what was selected.
ACTION_VIEW Display the data to the user
ACTION_SEARCH Perform a search
ACTION_SEND Send some data through another component

Intent Action

https://developer.android.com/reference/android/content/Intent

Predefined actions
(https://developer.android.com/reference/android/content/Intent)

18

Action Name Description
ACTION_IMAGE_CAPTION Open the camera and receive a photo
ACTION_VIDEO_CAPTION Open the camera and receive a video

ACTION_DIAL Open the phone app and dial a phone number
ACTION_SENDTO Send an email (email data contained in the extra)
ACTION_SETTINGS Open the system setting
ACTION_WIRELESS_SETTINGS Open the system setting of the wireless interfaces

ACTION_DISPLAY_SETTINGS Open the system setting of the display

Intent Action

https://developer.android.com/reference/android/content/Intent

19

Data passed from the caller to the called
Component.
● Def. of the data (URI) - setData()
● Type of the data (MIME type) - setType()

○ Multipurpose Internet Mail Extension

Component Name

Action Name

Data

Category

Extra Flags

intent.data = "https://www.unibo.it/"
intent.type = "text/html"

Intent Data

Do not call setData() and setType() if you need to set both because they
nullify each other: call setDataAndType()

20

Data is specified by a name and/or type

name: Uniform Resource Identifier (URI):
scheme://host:port/path
● tel://+1-330-555-0125
● content://contacts/people
● http://www.cs.unibo.it/

Intent Data

An Uri starting with
“content” means that
the data is stored on
the device.

21

Data is specified by a name and/or type

type: MIME (Multipurpose Internet Mail Extensions)-type
Composed by two parts: a type and a subtype

image/gif image/jpeg image/png image/tiff
text/html text/plain text/javascript text/css
video/mp4 video/mpeg4 video/quicktime video/ogg

application/vnd.google-earth.kml+xml

Intent Data

22

A String that gives additional information about the
action to execute.
● addCategory()
● for special intents that have additional features

to consider

Component Name

Action Name

Data

Category

Extra Flags

intent.addCategory(Intent.CATEGORY_BROWSABLE)

Intent Category

Predefined categories
(https://developer.android.com/reference/android/content/Intent)

23

Intent Category

Category Name Description
CATEGORY_HOME The activity displays the HOME screen.
CATEGORY_LAUNCHER The activity is listed in the top-level application

launcher, and can be displayed.

CATEGORY_PREFERENCE The activity is a preference panel.
CATEGORY_BROWSABLE The activity can be invoked by the browser to

display data referenced by a link.

https://developer.android.com/reference/android/content/Intent

24

Additional information that should be delivered to
the handler (e.g. parameters).
● Key-value pairs

○ putExtras()
○ getExtras()

●

Component Name

Action Name

Data

Category

Extra Flags

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra

(Intent.EXTRA_EMAIL,"federico.montori2@unibo.it")

Intent Extras

25

Extras can be predefined (for most Actions there are defined
extras that are expected)

○ e.g. for ACTION_SEND you can specify the recipient with EXTRA_EMAIL and the subject
with EXTRA_SUBJECT

Intent Extras

https://developer.android.com/reference/android/content/Intent

You can specify your own as long as the package is specified
const val EXTRA_BASS = "com.example.MyApplication.BASS_NOTE"

https://developer.android.com/reference/android/content/Intent

26

A bitwise OR of Integers containing additional
information that instructs Android how to launch a
component, and how to treat it after executed. Component Name

Action Name

Data

Category

Extra Flags

intent.flags =
Intent.FLAG_ACTIVITY_NEW_TASK or
Intent.FLAG_ACTIVITY_NO_ANIMATION

Intent Flags

27

Implicit intents are very useful to re-use code
and to launch external applications … how do we
know who responds?

Intent Resolution: sender side

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra(Intent.EXTRA_TEXT, "Hello World!")
intent.type = "text/plain"
if (intent.resolveActivity(packageManager) != null)

startActivity(intent)

28

We can force the generation of the chooser even
if the user selected a default choice.

val intent: Intent = Intent(Intent.ACTION_SEND)
intent.putExtra(Intent.EXTRA_TEXT, "Hello World!")
intent.type = "text/plain"
val chooser =

Intent.createChooser(intent, "You HAVE to choose!")
if (intent.resolveActivity(packageManager) != null)

 startActivity(chooser)

Intent Resolution: sender side

29

How to declare which intents a component is able to handle?
<intent-filter> tag in AndroidManifest.xml
This activity can capture intents with action com.example.ACTION_ECHO:

Intent Resolution: receiver side

<activity
 android:name=".MainActivity"

android:exported="true">
<intent-filter>

<action android:name="com.example.ACTION_ECHO" />
</intent-filter>

</activity>

exported indicates whether the activity can
be invoked by another application

30

It can be much more articulated:

● If you specify more than one intent-filter →

○ Your activity should handle intent received differently (e.g. view or edit an image)

as they are different entry points to the activity.

● If you specify more than one instance of the same tag (e.g. more than one action)

within the same intent-filter →

○ Your activity should handle each combination of these.

Intent Resolution: receiver side

31

The intent resolution process resolves the Intent-Filter that can handle a given Intent.

Three tests to be passed:

● Action field test

● Category field test

● Data field test

If the Intent-filter passes all the three test, then it is selected to handle the Intent.

Intent Resolution: receiver side

32

ACTION Test: An intent filter always needs to specify at least one action. The action

specified in the Intent must match one of the actions listed in the filter.

● If the filter does not specify any action → FAIL

● An intent that does not specify an action → SUCCESS as as long as the filter

contains at least one Action.

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />

</intent-filter>

33

CATEGORY Test: An intent filter for Activities always needs to specify at least one

category. Every category in the Intent must match a category of the filter.

● If the category is not specified in the Intent, Android assumes it is

CATEGORY_DEFAULT → the filter must include this category to handle the intent.

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

34

DATA Test: The URI of the intent is compared with the parts of the URI mentioned in

the filter (this part might be incomplete or using wildcards such as *).

● Both URI and MIME-types are compared (4 different sub-cases).

● All parts specified by the filter need to be matched by the Intent (not vice-versa).

●

●

Intent Resolution: receiver side

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/*" />

</intent-filter>

35

 Activities can be invoked to return results (e.g. pick an image from the gallery)

 Sender side: invoke the startActivityForResult (deprecated)

Intent with results

val ACTIVITY_CODE = 0
val intent: Intent = Intent(this, ActivityPrefix::class.java)
startActivityForResult(intent, ACTIVITY_CODE)
…
override fun onActivityResult

(requestCode: Int, resultCode: Int, data: Intent?) {
 // Invoked when SecondActivity completes its operations
}

36

 Activities can be invoked to return results (e.g. pick an image from the gallery)

 Receiver side: invoke the setResult()

Intent with results

val intent = getIntent() // in Kotlin this line is not even needed
setResult(RESULT_OK, intent)
intent.putExtra("response", "whatever you wanted")
finish() // The result is not returned until finish() is called

37

 Since Androidx, startActivityForResult() has been wrapped by

Activity Result API: https://developer.android.com/training/basics/intents/result

● To overcome cases when the calling activity is destroyed and recreated while the
called one is running.

● With the Activity Result API basically the callback is registered whenever the
caller is recreated, decoupling it from the call itself.

● A whole set of new callback functions

Intent with results

https://developer.android.com/training/basics/intents/result

Registering can be called when declaring state variables
● GetContent is a default contract constructor that is used to

return…content! In this case you get back a Uri from the called Activity
○ The contract specifies the type of input and the type of output
○ You can create your own contracts

● registerForActivityResult finally returns a launcher that we can fire

38

Intent with results

val mLauncher: ActivityResultLauncher<String> =
registerForActivityResult(

ActivityResultContracts.GetContent(),
ActivityResultCallback<Uri?>() { uri: Uri? -> /* Handle the Uri */ }

)

Fire it by passing in the data type that you want the user to choose from
(following this example, you’d probably open the gallery).
● There are several default contracts…

○ https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts

● What if I want to use it the “classic” way (no need of a contract)?

39

Intent with results

val mLauncher: ActivityResultLauncher<Intent> =
registerForActivityResult(ActivityResultContracts.StartActivityForResult())

{ result: ActivityResult ->
 if (result.resultCode == RESULT_OK) { intent = result.data } }

mLauncher.launch(Intent(this, ActivityPrefix::class.java))

mLauncher.launch("image/*")

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts

40

Intent with results
/* Creating a custom contract… */
class PickRingtone : ActivityResultContract<Int, Uri?>() {
 override fun createIntent(context: Context, ringtoneType: Int) =
 Intent(RingtoneManager.ACTION_RINGTONE_PICKER).apply {
 putExtra(RingtoneManager.EXTRA_RINGTONE_TYPE, ringtoneType)
 }

 override fun parseResult(resultCode: Int, result: Intent?) : Uri? {
 if (resultCode != Activity.RESULT_OK) {
 return null
 }
 return result?.getParcelableExtra(RingtoneManager.EXTRA_RINGTONE_PICKED_URI)
 }
}

If your app offers functionality that might require access to restricted
data or restricted actions, you need to ask permissions.

41

Permissions have
seen changes in the
history of Android…

Android Permission System

Always declare them in the manifest:

Starting from 6.0
● User can only grant a subset of the permission set
● User can revoke permission after installing the app
● Declare them in the manifest and check if the permission is granted

42

Android Permission System

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

Request the permission using the Activity Result API for a solid
experience. The launcher should look like this:

43

Android Permission System

 val requestPermissionLauncher = registerForActivityResult(
 ActivityResultContracts.RequestPermission()
) { isGranted: Boolean ->
 if (isGranted) {
 // Permission is granted.
 } else {
 // Permission is denied.
 }
 }

You can still use separately,
although obsolete:
● requestPermission()
● onRequestPermissionsResult()

Request the permission:

44

Android Permission System

val REQUEST_CODE = 0
when {

ContextCompat.checkSelfPermission(this,
android.Manifest.permission.ACCESS_COARSE_LOCATION

) == PackageManager.PERMISSION_GRANTED -> {
 // Permission is already granted.

}
ActivityCompat.shouldShowRequestPermissionRationale(

this, android.Manifest.permission.ACCESS_COARSE_LOCATION) -> {
// Show an explanation.

}
else -> { requestPermissionLauncher.launch(

Manifest.permission.REQUESTED_PERMISSION) } }

A View that displays web pages, including simple browsing methods
(history, zoom in/out/ search, etc).
It is the container for Capacitor Hybrid apps..

Main methods:
● loadUrl(url) → load the HTML page at url
● loadData(data, mimeType, encoding) → load the HTML page

contained in data
45

WebView

It needs android.permission.INTERNET
(one of the few that does not need runtime
permissions)
● All it does is pretty much showing the

content of a Web page. It’s NOT a
browser.

● Useful when you quickly need content
that is always up to date.

● In some case better than getting data,
parsing and displaying in a layout. 46

WebView

It is possible to modify the visualization options of a WebView through the
WebSettings class.
Some options:
● setJavaScriptEnabled(boolean)
● setBuildInZoomControls(boolean)
● setDefaultFontSize(int)

Also, bear in mind that cleartext data is not allowed by default. If you really
need it then add to your manifest (application tag):

47

WebView

android:usesCleartextTraffic="true"

Override the behavior for which links in the WebView open in the WebView
(they in fact don’t throw an intent) with a WebViewClient

48

WebView

webView.webViewClient = object: WebViewClient() {
 override fun shouldOverrideUrlLoading(
 view: WebView?,
 request: WebResourceRequest?
): Boolean {
 if (request?.url?.host == Uri.parse(WEBSITE).host) {
 // This is my website, let the webView handle it
 return false
 } else return super.shouldOverrideUrlLoading(view, request)
 }
 }

By default, the WebView UI does not include any navigation button
…However, callbacks methods are defined:

● public void goBack()
● public void goForward()
● public void reload()
● public void clearHistory()

49

WebView

override fun onKeyDown
(keyCode: Int, event: KeyEvent?): Boolean {
/* Is there a page in the history? */

if (keyCode == KeyEvent.KEYCODE_BACK &&
initialized &&
webView.canGoBack()) {

webView.goBack()
return true

} else return super.onKeyDown(keyCode, event)
}

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

