
Activities

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Overview on Activities
● Activities Lifecycle
● Tasks and Backstack
● Contexts
● The Main Thread
● Logs

2

3

Activity

A mobile app experience differs from its desktop counterpart

● A user lands in the application nondeterministically

● You can open your emails and see the full inbox

● If you go there from a website you may land on the “compose message”

screen instead

These different contexts are called Activities

4

Activity

We call Activity a screen state

● The entry point for a user interaction
○ Can be seen as a single screen

● Has methods to react to certain events

● An application can be composed of multiple activities
○ it is not seen as an atomic whole

● Android maintains a stack of activities

5

Declare them in the Manifest before running them (Usually done automatically)

Activity

 <application
 … >
 <activity android:name=".MainActivity" android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

6

The Android Manifest is what the operating system can read about your
application.

● It tells which activities you have and how a user can access them.

● MAIN and LAUNCHER means that this activity is accessed via the app

icon in the home screen.
○ We’ll see more of these in the lecture about “Intents”

Activity

7

As the user navigates in and
out the app, the Activity can
go through several states.

We use reactive
programming, since we put
our code in callbacks,
invoked when the activity
transitions from one state to
another.

Activity Lifecycle

on
Fr

ee
ze

()
 is

 n
ot

 u
se

d
an

ym
or

e
si

nc
e

20
08

.

8

1. visible and interactable

2. visible but not interactable

3. not visible

Activity Lifecycle

4. not in memory

This reflects the likelihood of killing the Activity’s process if the system needs memory

9

● Resumed
○ The activity is in the foreground, and the user can interact.

● Paused (but started...)
○ The activity is visible, maybe overlaid by another activity. Cannot execute any code nor

receive direct inputs.

● Stopped (but created…)
○ Activity is hidden, in the background. It cannot execute any code.

Activity Lifecycle

10

● Need to implement every single method? No!
○ It depends on the application complexity

● Why is it important to understand the activity lifecycle?

○ So your application does not crash (or do “funny” things) while the user is running

something else on the smartphone

○ So your application does not consume unnecessary resources

○ So the user can safely stop your application and return to it later

Activity Lifecycle

11

● onCreate()

○ Called when the activity is created
○ Should contain the startup logic to be

executed only once.
○ Has a Bundle parameter (a composite

with saved data)
○ If onCreate() terminates, it calls

onStart()

Activity Lifecycle

12

● onCreate()

○ Responsible for drawing the UI with
setContentView()

Activity Lifecycle

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }

13

● OnStart()
○ Called right before it is visible to

user (where the code that
maintains the UI is initialized).

Activity Lifecycle

@Override
 protected void onStart() {
 super.onStart();
 }

 override fun onStart() {
 super.onStart()
 }

14

● OnResume()
○ If it successfully terminates, then the

Activity is RUNNING
○ Restore components that were

disposed in onPause()
@Override
 protected void onResume() {
 super.onResume();
 }

 override fun onResume() {
 super.onResume()
 }

Activity Lifecycle

15

● OnPause()
○ Called when something interrupts the

activity.
○ Do not save data, it is fast.
○ Stop cpu-consuming processes.

Activity Lifecycle

@Override
 protected void onPause() {
 super.onPause();
 }

 override fun onPause() {
 super.onPause()
 }

16

● OnPause()
○ Another component (NOT FROM THE

SAME ACTIVITY) requests the foreground
○ A component comes in the foreground

partially hiding the activity (e.g. a dialog)
○ Another window in a multi-window

application is tapped.
○ Any other event that will also imply the

onStop()

Activity Lifecycle

17

● OnRestart()

○ Only when the activity was

previously stopped.

Activity Lifecycle

@Override
 protected void onRestart() {
 super.onRestart();
 }

 override fun onRestart() {
 super.onRestart()
 }

18

● OnStop()
○ Activity is no longer visible to

the user
○ Could be called because:

■ the activity is about to be
destroyed

■ another activity comes to the
foreground

Activity Lifecycle

19

● OnStop()
○ Used to perform CPU-intense

shutdown operations.

Activity Lifecycle

@Override
 protected void onStop() {
 super.onStop();
 }

 override fun onStop() {
 super.onStop()
 }

20

● OnDestroy()
○ The system needs some stack space

○ The screen changes the layout (portrait/landscape)

○ Someone called finish() method on this activity
■ check with isFinishing()

Activity Lifecycle

@Override
 protected void onDestroy() {
 super.onDestroy();
 }

 override fun onDestroy() {
 super.onDestroy()
 }

21

Three Loops:

● Entire lifetime
○ Between onCreate() and onDestroy().
○ Setup of global state in onCreate()
○ Release remaining resources in onDestroy()

● Visible lifetime
○ Between onStart() and onStop().
○ Maintain resources that have to be shown to the user.

● Foreground lifetime
○ Between onResume() and onPause().
○ Code should be light.

Activity Lifecycle

Logs with Logcat

The Logcat window in Android Studio helps you debug your app by displaying
logs from your device in real time.

For example, messages that you added to your app with the Log class…

Class Log has several methods that define the importance of the log
message.

They can be filtered by Logcat.

Logs with Logcat

Log.v ("LABEL", "message") // VERBOSE

Log.d ("LABEL", "message") // DEBUG

Log.i ("LABEL", "message") // INFORMATION

Log.w ("LABEL", "message") // WARNING

Log.e ("LABEL", "message") // ERROR

Log.wtf ("LABEL", "message") // SHOULD NEVER HAPPEN IN LIFE

HIGHEST PRIORITY

LOWEST PRIORITY

24

When an activity is destroyed and then navigated back, the system
recreates a new instance. We typically want everything back as it was,
which is saved to a Bundle called Instance State.

● Android keeps the state of each view
○ Remember to assign unique Ids to them
○ So, no explicit code is needed for the “basic”

behavior

● What if I want to save more data?
○ Variables, states…

Recreating Activities

25

What if I want to save more data?

● Override onSaveInstanceState() and onRestoreInstanceState()
● Use a ViewModel (we will see that later on…)

onSaveInstanceState() called likely right before onStop()
static final String STATE_SCORE = "playerScore";
@Override
public void onSaveInstanceState

(Bundle savedInstanceState) {

super.onSaveInstanceState (savedInstanceState);
 savedInstanceState.putInt(

STATE_SCORE, mCurrentScore
);

}

override fun onSaveInstanceState(
savedInstanceState : Bundle) {
super.onSaveInstanceState

(savedInstanceState)
 outstate.putInt(

STATE_SCORE, mCurrentScore
)

}

companion object { val STATE_SCORE = "playerScore" }

Recreating Activities

26

onRestoreInstanceState() called likely right after onStart()
@Override
public void onRestoreInstanceState

(Bundle savedInstanceState) {
// Call the superclass to restore the views

super.onRestoreInstanceState
(savedInstanceState);

mCurrentScore =
savedInstanceState.getInt(STATE_SCORE);

}

override fun onRestoreInstanceState
(savedInstanceState: Bundle) {
// Call the superclass to restore the views
super.onRestoreInstanceState

(savedInstanceState)
mCurrentScore =

savedInstanceState.getInt(STATE_SCORE)
}

Recreating Activities

As an alternative, you can do so in the onCreate() method, as the bundle
(possibly null) is passed in as a parameter.

27

● Activities should be declared in the Manifest
● Extend the Activity class
● Code wisely

○ Put your code in the right place
○ Optimize it
○ Test even on low-end devices
○ Watch out, configuration changes (rotating screens)

destroy the activity

Activities: Summary

28

Activities in the same app can occur on top of each other, in such
case the previous activity (stopped) stays saved in the BackStack.

● By navigating back the user pops the current activity from the
BackStack and destroys it, restoring the one on top.

Tasks and BackStack

29

Launching the same Activity in two different
phases of the same storyline causes the
creation of two separate instances by
default.

This can be avoided…
● use Flags in the calling Intent… more on this later

Tasks and BackStack

30

● Navigating back on the root activity causes the app to terminate
(Android 11 and previous) or brings the current task in background
(Android 12 and later).
○ Navigating through activities requires Intents (we’ll see them).

Tasks and BackStack

31

What is a Task?

It is a cohesive unit that contains a storyline (a BackStack) and can be
in the foreground (if the top Activity is running) or in the background
(if all Activities are stopped).

A task in the background can be seen in the “Recent Activities” UI.

An app can be made of multiple tasks (thus, multiple BackStacks).

Tasks and BackStack

32

Launching an app from the Home screen, by default, lands always in the same
Task.

For each activity we can choose if starting a new task and customize several
parameters:

● In the manifest
● In the flags in the launching Intent

More details on
https://developer.android.com/guide/components/activities/tasks-and-back-stack#ManagingTasks
and in the next lectures…

Tasks and BackStack

https://developer.android.com/guide/components/activities/tasks-and-back-stack#ManagingTasks

33

Normally, each application runs on its own Linux process, called the Main Thread

“An unusual and fundamental feature of Android is that an application process'
lifetime isn't directly controlled by the application itself. Instead, it is determined by
the system through a combination of the parts of the application that the system

knows are running, how important these things are to the user, and how much
overall memory is available in the system.”

Activities are running and keeping alive the Main Thread, but other components
may influence it so we should keep an eye out.

The Main Thread

34

Class Activity or AppCompatActivity (like others) implement the abstract class
Context.

Context is a handle to the system, providing environment references and used for,
e.g. :

● Loading a resource.
● Launching a new activity.
● Creating views.
● Obtaining system services.

etc…

Contexts

Making a Toast

Toast.makeText(this, “Hello world, I am a toast.”, Toast.LENGTH_SHORT).show()

● Tiny messages over the Activity (takes the Context as an input)
● Used to signal to the user confirmation, little errors
● You can control the duration of the Toast
As simple as:

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

