Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &
Computer Science for Management

University of Bologna

Kotlin

Federico Montori
federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

Table of Contents

Android and Kotlin

Getting started with Kotlin
Kotlin Tutorial: Fundamentals
Kotlin Tutorial: Null Safety
Kotlin Tutorial: Lambdas
Kotlin Tutorial: Classes

Kotlin and Java

Q toptal

Java and Kotlin

Why Java and Kotlin?

Java has been the official language for
years and most supported until 2021.

As for now, it's not the most used, Kotlin
took over, however since we know
Java we can still use it.

A few drawbacks though...
more on this later.

It is the official programming language for Native Android

since 2019

Announced by JetBrains in 2011
New language for the JVM

Open source since 2012 under Apache 2 License
Named after Kotlin Island

o FYl Javais anisland too

Kotlin General Features

e ltis a Type Inference language (like Python)
o Still, it is statically typed (unlike Python)
e [tis Cross-Platform
e [t compiles to Java Bytecode
o Fully interoperable with Java
o You can write easily mixed code projects
o It can also compile to Javascript and other stuff

Getting started with Kotlin

ava, it is not bound to Android

intellii-community = I platform I core-api

[&] Project ~ O = | % =
v I core-api [intellij.platform.core]

Em diagnostic
Bm formatting
ide
injected.editor
bm lang
v bufolding
CompositeFoldingBuilder
CustomFoldingBuilder
CustomFoldingProvider
FoldingBuilder
FoldingBuilderEx
FoldingDescriptor
LanguageFolding
injection
ASTNode
CodeDocumentationAwareCo
CodeDocumentationAwareCo
Commenter
CompositeLanguage
CustomUncommenter
DependentLanguage
FCTSBackedLighterAST
FileASTNode
InjectableLanguage
ITokenTypeRemapper
Language

src Bmcom Pmintellj Pulang Pu folding = @ LanguageFolding = IDEA

LanguageFolding java

@NotNull
@override
List<FoldingBuilder> allForLanguage(@otNull Language) {
(Language 1 = = = l.getBaselanguage()) {
List<FoldingBuilder> = forKey(1)
(€] -isEmpty()) {

}
}
Collections. emptyList()
}

@NotNull
FoldingDescriptor[] buildFoldingDescriptors(@Nullable FoldingBuilder b er
(1DumbService. isDumbAware(builder) && DumbService.getInstance(root.getProject()).isbu
FoldingDescriptor.

FoldingBuilderEx) {
((FoldingBuilderEx)b er).buildFoldRegions (

ASTNode = ~getNode()

|
FoldingDescriptor.

builder.buildFoldRegions (ASTNode node, Document document) FoldingDescriptor(]
FoldingDescriptor.EMPTY FoldingDescriptor(]
Dot, space and some other keys will also close this lookup and be inserted into editor >>

P

7812 LF: UTF-8 %

Intellij IDEA (supported native

Basically the brother of Android Studio...

RUN B v Appkt X [e e

v VARIABLES src > main > kotlin > kt > sample > app > K App.kt

v Locals

this:

kt.sample.app
{
greeting: String

()

return "Hello world."

main(args: Array<String>) {
printin(App().greeting)

v WATCH

Visual Studio Code

‘2 App

&

Variables and Types

Declaration of variables and types

var x: Int =42 // Declaration of a variable with type Int
var x =42 // Declaration of a variable with inferred type Int
val x =42 // Declaration of a constant with inferred type Int

Type inference does not mean that types are dynamic (like in Python...)
var x =42

X="'C // This will give an error

Disclaimer: this is an accelerated tutorial :: Complete official guide:
httne://lkotlinlana ora/doce/home himl

https://kotlinlang.org/docs/home.html

Variables and Types

Basic types: Can always specify them, or: You can
e Int var x = 42 specify true
e Long var x = 42L constants:
* Short const val
e Byte numRounds = 42
e Float var x = 42.42f
e Double var x = 42.42 /* This can only be
e Boolean var x = true used in t.op-level. ,
o declaration and it is
e Char var x = ‘f
.) § not evaluated at
e String var x = “fortytwo runtime */

Operators

Operations in Kotlin are quite straightforward...
e Arithmetic Operators
o +-*/%
e Logical Operators
o &&||!
e Comparison Operators
O <>== >=«<=l=

Strings and Prints

Like some other imperative languages, the access point is

the main function.

// Enhanced Hello World Example

fun main() {
val nickname: String = “stradivarius”

println(“Hello world, my name is Snickname”)

10

Selection Contstruct

The IFTE construct is straightforward too...

if (condition) {
// Then Clause
} else {
// Else Clause

}

There is a contract syntax for assignments

vary=if (x==42) 1 else 0 1

Selection Construct

The case construct is as follows

when (x) {
in 0..21 -> println("One line clause")
in 22..42 -> println {
println("Multiple line clause")

}

else -> println("Default clause")
}

With the double dot (..) you can specify ranges, which originate Lists (see later). 12

Arrays and Lists

val arr: IntArray = intArrayOFf(1, 2, 3) //[1,2,3]
printin(arr[0])

Arrays are a class and can be instantiated in several ways (they also have their subtypes):
Equivalent to their primitive in C: immutable in size, type-invariant

// Array of int of size 5 with values [0, 0, 0, 0, 0]
val arr = IntArray(5)

// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

// Array of int of size 5 with values [0, 1, 2, 3, 4] (lambda, you'll see...)
var arr = IntArray(5) {it* 1} 13

Arrays and Lists

Lists can be “constants” or “variables”.
ArrayList is just one List implementation...

// Immutable List
val myList = listOF<String>("one", "two", "three")
println(myList)

// Mutable List (referenced by a val because it is the pointer)
val myMutableList = mutableListOf<String>("one", "two", "three")
myMutableList.add("four") "

The iteration constructs are straightforward too...

// While loop

var counter=0

while (counter < myMutableList.size) {
println(myMutableList[counter])
counter++

}

// For loop
For(item in myListMutable) // Here we can use ranges as well
println(item)

15

Null Safety

One of the major advantages of Kotlin is the Null Safety

- The program does not crash because of null values (remember
the annoying Java NullPointerException)

e Basically types are non-nullable, in fact variables are either:
o Initialized
o Explicitly null, but they throw error at compile time
e Variables that can be null are Nullable but calling them is safe

) 16
let’'s see how...

Null Safety

Non nullable types

var s: String = "Hello" // Regular initialization means non-null by default
s = null // compilation error

Nullable types

var s: String? = "Hello" // Nullable initialization means it can be null

s = null // this is ok: e.q. if you print it, it will print “null”

Null safety

val | = s.length // Compiler error: “s can be null”

val [= s?.length // IF siis null then lis null (if nullable) -

val [=if (s != null) s.length else -1 // Custom workaround

Null Safety

This is true even for more complex scenarios, for instance:

val name: String? = department?.head?.getName()

If anything in here is null, then the function is not called

You really want it to be not null:

val [=s!!.length // Casts s to non nullable, can throw exception

The “Elvis” operator

val | =s?.length ?: -1 // -1 is the default value for lif s is null L

Functions

Ordinary functions (they support the default value)

fun isEven(number: Int = 0): Boolean { // number is set to 0 if not passed
return number % 2 ==

}
isEven(14)

Extension functions

Fun Int.isEven(): Boolean { // Extend the class Int
return this % 2 ==

}
14.isEven() 1°

Higher Order Functions

Higher order functions take functions as inputs

// Function that counts members in a List of strings that respect a certain condition

Fun List<String>.customCount(function: (String) -> Boolean): Int {
var counter=0
For (strin this) {
if (Function(str))
counter++

}

return counter

20

Higher Order Functions

They might as well take any type in (usually called “generics”)

// Function that counts members in a List of any type that respect a certain condition

Fun <T> List<T>.customCountAllTypes(function: (T) -> Boolean): Int {
var counter=0
For (anything in this) {
if (Function(anything))
counter++

}

return counter

21

Lambdas

Lambdas are undeclared functions that are passed directly as they are
and used once.

-> Added to Java as well

Let us use the previous higher order functions...

val myList = listOf<String>(“one”, “two”, “three”)
val x: Int = myList.customCount { str -> str.length == 3 }

val x: Int = myList.customCountAllTypes { str -> str.length == 3 } 22

Classes

Classes are pretty much like in Java, however they typically have a primary constructor:

class Animal (// Constructor is within round brackets
val name: String,
val legCount: Int =4 // Default value if not passed
) {
var sound: String = "Hey" // Property not initialized by the constructor
init {
println("Hello | am a $Sname") // Function executed at instantiation time
}
}
val dog = Animal("dog") // Instantiation of a class into an object

val duck = Animal("duck", 2) 23

Classes

Properties have default accessors (setters, getters...)
you can define custom ones or make it private...

// Equivalent notation
var sound: String = "Hey"
get() = Field
set(value) { field = value } // Keyword field refers to the property

// Custom notation
var sound: String = "Hey"
get() = this.name
private set // Setter is private

val dog = Animal("dog")
dog.sound // Will access the getter, not the property

24

Classes

You can obviously subclass that if the original class is open

class Dog: Animal("dog") { class Duck: Animal("duck”, 2) {
Fun bark() { fun quack() {
println("WOOF") printin("QUACK")
} }

25

Classes

Let us make that abstract

abstract class AbstractAnimal (

val name: String,
val legCount: Int =4

)

abstract Fun makeSound()

}

Then you'll have to implement
the abstract method

class Cat: AbstractAnimal("cat") {
override Fun makeSound() {
printin("MEOW")

}

26

Classes

You can create an anonymous class, if used only once:

val bear = object: AbstractAnimal("bear") {
override fun makeSound() {
println("GROWL")

}

You can also create a sealed class, to prevent third parties to extend it
outside your package - i.e. subclasses are known at compile time.

27

Classes

In Kotlin every object property needs to be initialized upon declaring
the object. You can defer that by using lateinit

class Animal (class Animal (

val name: String, val name: String,

val legCount: Int =4 val legCount: Int =4
) {) {

var sound: String = "Hey" lateinit var sound: String
} }

You must make sure that the variable is initialized somewhere else,
e.g. in a Unit Test or a setup function...

28

Classes

A companion object is much like a static object in Java, it creates a
Singleton that is tied to the class, rather than to the instance.

class Animal (
val name: String,
val legCount: Int = 4

){ The example shows a single
e G s | o constant value, but it might as
} const val Kingdom: String = "Animalia well be 3 fU”y ﬂedged object, like
) a factory.

println(Animal.Kingdom) 29

Scope Functions

Scope functions are used to simplify multiple interaction with the
same object: apply (context object is the receiver “this”, returns the
object itself)

val snake = Animal("snake") // Without “apply”
snake.legCount =0
snake.sound = "Hiss"

val snake = Animal("snake").apply { // With “apply”
legCount =0
sound = "Hiss"

} 30

Scope Functions

Scope functions are used to simplify multiple interaction with the
same object: let (context object is the lambda argument “it”)

val numbers = mutableListOf("one", "two", "three", "Four", "five")
val resultList = numbers.map {it.length }.ﬁlter {it>3} // Without Let
println(resultList)

val numbers = mutableListOf("one", "two", "three", "Four", "five")

numbers.map {it.length }.Filter {it >3 }.let { // With Let
println(it)
// and more function calls if needed without using a result variable

} 31

Scope Functions

Scope functions are used to simplify multiple interaction with the
same object: with (context object passed, but is the receiver “this”)

val snake = Animal("snake") // Without “with”
snake.makeSound()

val snake = Animal("snake")
with(snake) { // With “with"
makeSound()

}

32

Scope Functions

Scope functions are used to simplify multiple interaction with the
same object: run (context object is the receiver “this”, but returns the
lambda result)

val snake = Animal("snake") // Without “run”
snake.legCount =0
val legNumbers = snake.howManyLegs()

val snake = Animal("snake") // With “run”
val legNumbers = snake.run() {
legCount =0
howManyLegs() 23

Scope Functions

Scope functions are used to simplify multiple interaction with the
same object: also (context object is the lambda argument “it”, but
returns the object)

val numbers = mutableListOf("one", "two", "three", "Four", "five")
numbers.add("six") // Without Also
println(numbers)

val numbers = mutableListOf("one", "two", "three", "Four", "five")
numbers.also { // With Also
it.add("six")
println(it)

34

Delegation

There may be cases where your class implements an interface in the same
way as it is implemented elsewhere— you can delegate the implementation.

interface Animal {

class PersianCat (val cat : Cat)
val legCount: Int

: Animal by cat {

} fun someOtherMethod () {... }

}

// This will automatically implement all the
interface members of Animal in

PersianCat by invoking the same member
on cat.

class Cat
(override val legCount: Int) : Animal

Delegation

import kotlin.reflect.KProperty]
class DelegatedProperty (private val default: String) { Delegatlon can be used to do

private var _value: String? = null lazy loading (i.e. evaluating an

D i expression only the first time it
operator Fun getValue(

thisRef: Any?, property : KProperty<*>): String? { is inVOked)- Kotlin also has a
if (loaded) return value built-in expression

_value =retrieveValue()

loaded = true

return value .
) val name: String? by lazy {

} retrieveValue()

// In your body: the by redirects to getValue()
val name by DelegatedProperty("myDef")

Kotlin & Java: Differences

e Explicit types Type inference
e Strictly OOP Not necessarily OOP
(e Not Null Safe Null Safe
C_{ e Explicit set & get Implicit set & get
—) + Extension functions

+ Scope Functions
+ Lambdas

+ Implicit Casting
+ Structured Concurrency

o Coroutines (TBC) &

Kotlin for Android

How to set up an Android project in Kotlin?
Literally in the same waly it is done for Java!

e Still uses XML resources

e Everything still applies to what we will see:
o Resources

o Activity Lifecycle

o Fragments

o Intents

o Views

O

e Only thing that changes is the syntax... 38

Kotlin for Android

BUT...
There are certains things that can only be done with Kotlin...

e Android Jetpack Compose projects (similar to Flutter)
e Structured concurrency (Coroutines & Flows)

Mainly because Java is there for historical and retrocompatibility

reasons.

Mainly library issues... because they are both Turing complete they

have virtually the same capabillities! -

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

