
Kotlin

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

mailto:federico.montori2@unibo.it

Table of Contents

● Android and Kotlin
● Getting started with Kotlin
● Kotlin Tutorial: Fundamentals
● Kotlin Tutorial: Null Safety
● Kotlin Tutorial: Lambdas
● Kotlin Tutorial: Classes
● Kotlin and Java

3

Why Java and Kotlin?

Java has been the official language for
years and most supported until 2021.

As for now, it’s not the most used, Kotlin
took over, however since we know
Java we can still use it.

A few drawbacks though…
more on this later.

Java and Kotlin

4

It is the official programming language for Native Android
since 2019
● Announced by JetBrains in 2011
● New language for the JVM
● Open source since 2012 under Apache 2 License
● Named after Kotlin Island

○ FYI Java is an island too

5

● It is a Type Inference language (like Python)
○ Still, it is statically typed (unlike Python)

● It is Cross-Platform
● It compiles to Java Bytecode

○ Fully interoperable with Java
○ You can write easily mixed code projects
○ It can also compile to Javascript and other stuff

Kotlin General Features

6

Kotlin is Cross-Platform → like Java, it is not bound to Android

Intellij IDEA (supported natively)
Basically the brother of Android Studio…

Visual Studio Code

Getting started with Kotlin

7

Type inference does not mean that types are dynamic (like in Python…)

var x: Int = 42 // Declaration of a variable with type Int
var x = 42 // Declaration of a variable with inferred type Int
val x = 42 // Declaration of a constant with inferred type Int

Declaration of variables and types

var x = 42
x = ‘c’ // This will give an error

Disclaimer: this is an accelerated tutorial :: Complete official guide:
https://kotlinlang.org/docs/home.html

Variables and Types

https://kotlinlang.org/docs/home.html

8

Basic types:
● Int
● Long
● Short
● Byte
● Float
● Double
● Boolean
● Char
● String

Can always specify them, or:
var x = 42
var x = 42L

var x = 42.42f
var x = 42.42
var x = true
var x = ‘f’
var x = “fortytwo”

Variables and Types

You can
specify true
constants:

const val
numRounds = 42

/* This can only be
used in top-level
declaration and it is
not evaluated at
runtime */

9

Operations in Kotlin are quite straightforward…
● Arithmetic Operators

○ + - * / %
● Logical Operators

○ && || !
● Comparison Operators

○ < > == >= <= !=

Operators

10

Like some other imperative languages, the access point is

the main function.

// Enhanced Hello World Example
fun main() {

val nickname: String = “stradivarius”
println(“Hello world, my name is $nickname”)

}

Strings and Prints

11

The IFTE construct is straightforward too…
if (condition) {

// Then Clause
} else {

// Else Clause
}

There is a contract syntax for assignments

var y = if (x == 42) 1 else 0

Selection Contstruct

12

The case construct is as follows

when (x) {
in 0..21 -> println("One line clause")
in 22..42 -> println {

println("Multiple line clause")
}
else -> println("Default clause")

}

With the double dot (..) you can specify ranges, which originate Lists (see later).

Selection Construct

13

Arrays are a class and can be instantiated in several ways (they also have their subtypes):
Equivalent to their primitive in C: immutable in size, type-invariant

val arr: IntArray = intArrayOf(1, 2, 3) // [1,2,3]
println(arr[0])

// Array of int of size 5 with values [0, 0, 0, 0, 0]
val arr = IntArray(5)

// Array of int of size 5 with values [42, 42, 42, 42, 42]
val arr = IntArray(5) { 42 }

// Array of int of size 5 with values [0, 1, 2, 3, 4] (lambda, you’ll see…)
var arr = IntArray(5) { it * 1 }

Arrays and Lists

14

// Immutable List
val myList = listOf<String>("one", "two", "three")
println(myList)

// Mutable List (referenced by a val because it is the pointer)
val myMutableList = mutableListOf<String>("one", "two", "three")
myMutableList.add("four")

Lists can be “constants” or “variables”.
ArrayList is just one List implementation…

Arrays and Lists

15

// While loop
var counter = 0
while (counter < myMutableList.size) {

println(myMutableList[counter])
counter++

}

// For loop
for(item in myListMutable) // Here we can use ranges as well

println(item)

The iteration constructs are straightforward too…

Loops

16

One of the major advantages of Kotlin is the Null Safety

➔ The program does not crash because of null values (remember
the annoying Java NullPointerException)

● Basically types are non-nullable, in fact variables are either:
○ Initialized
○ Explicitly null, but they throw error at compile time

● Variables that can be null are Nullable but calling them is safe

let’s see how…

Null Safety

17

var s: String = "Hello" // Regular initialization means non-null by default
s = null // compilation error

Non nullable types

var s: String? = "Hello" // Nullable initialization means it can be null
s = null // this is ok: e.g. if you print it, it will print “null”

Nullable types

val l = s.length // Compiler error: “s can be null”
val l = s?.length // If s is null then l is null (if nullable)
val l = if (s != null) s.length else -1 // Custom workaround

Null safety

Null Safety

18

val name: String? = department?.head?.getName()

This is true even for more complex scenarios, for instance:

val l = s!!.length // Casts s to non nullable, can throw exception

If anything in here is null, then the function is not called

You really want it to be not null:

val l = s?.length ?: -1 // -1 is the default value for l if s is null

The “Elvis” operator

Null Safety

19

fun isEven(number: Int = 0): Boolean { // number is set to 0 if not passed
return number % 2 == 0

}
isEven(14)

Ordinary functions (they support the default value)

fun Int.isEven(): Boolean { // Extend the class Int
return this % 2 == 0

}
14.isEven()

Extension functions

Functions

20

// Function that counts members in a List of strings that respect a certain condition

fun List<String>.customCount(function: (String) -> Boolean): Int {
var counter = 0
for (str in this) {

if (function(str))
counter++

}
return counter

}

Higher order functions take functions as inputs

Higher Order Functions

21

// Function that counts members in a List of any type that respect a certain condition

fun <T> List<T>.customCountAllTypes(function: (T) -> Boolean): Int {
var counter = 0
for (anything in this) {

if (function(anything))
counter++

}
return counter

}

They might as well take any type in (usually called “generics”)

Higher Order Functions

22

Lambdas are undeclared functions that are passed directly as they are
and used once.
➔ Added to Java as well

val myList = listOf<String>(“one”, “two”, “three”)

val x: Int = myList.customCount { str -> str.length == 3 }

val x: Int = myList.customCountAllTypes { str -> str.length == 3 }

Let us use the previous higher order functions…

Lambdas

23

Classes are pretty much like in Java, however they typically have a primary constructor:

class Animal (// Constructor is within round brackets
val name: String,
val legCount: Int = 4 // Default value if not passed

) {
var sound: String = "Hey" // Property not initialized by the constructor

init {
println("Hello I am a $name") // Function executed at instantiation time

}
}
val dog = Animal("dog") // Instantiation of a class into an object
val duck = Animal("duck", 2)

Classes

24

Properties have default accessors (setters, getters…)
you can define custom ones or make it private…

// Equivalent notation
var sound: String = "Hey"

get() = field
set(value) { field = value } // Keyword field refers to the property

// Custom notation
var sound: String = "Hey"

get() = this.name
private set // Setter is private

val dog = Animal("dog")
dog.sound // Will access the getter, not the property

Classes

25

You can obviously subclass that if the original class is open

class Dog: Animal("dog") {
fun bark() {

println("WOOF")
}

}

Classes

class Duck: Animal("duck", 2) {
fun quack() {

println("QUACK")
}

}

26

Let us make that abstract

abstract class AbstractAnimal (

val name: String,
val legCount: Int = 4

) {
abstract fun makeSound()

}

class Cat: AbstractAnimal("cat") {
override fun makeSound() {

println("MEOW")
}

}

Then you’ll have to implement
the abstract method

Classes

27

You can create an anonymous class, if used only once:
val bear = object: AbstractAnimal("bear") {

override fun makeSound() {
println("GROWL")

}
}

Classes

You can also create a sealed class, to prevent third parties to extend it
outside your package - i.e. subclasses are known at compile time.

28

In Kotlin every object property needs to be initialized upon declaring
the object. You can defer that by using lateinit
class Animal (

val name: String,
val legCount: Int = 4

) {
var sound: String = "Hey"

}

Classes

You must make sure that the variable is initialized somewhere else,
e.g. in a Unit Test or a setup function…

class Animal (
val name: String,
val legCount: Int = 4

) {
lateinit var sound: String

}

29

A companion object is much like a static object in Java, it creates a
Singleton that is tied to the class, rather than to the instance.
class Animal (

val name: String,
val legCount: Int = 4

) {
companion object {

const val Kingdom: String = "Animalia"
}

}

println(Animal.Kingdom)

Classes

The example shows a single
constant value, but it might as
well be a fully fledged object, like
a factory.

30

Scope functions are used to simplify multiple interaction with the
same object: apply (context object is the receiver “this”, returns the
object itself)

val snake = Animal("snake").apply { // With “apply”
 legCount = 0
 sound = "Hiss"
}

val snake = Animal("snake") // Without “apply”
snake.legCount = 0
snake.sound = "Hiss"

Scope Functions

31

Scope functions are used to simplify multiple interaction with the
same object: let (context object is the lambda argument “it”)

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }.let { // With Let
 println(it)
 // and more function calls if needed without using a result variable
}

val numbers = mutableListOf("one", "two", "three", "four", "five")
val resultList = numbers.map { it.length }.filter { it > 3 } // Without Let
println(resultList)

Scope Functions

32

Scope functions are used to simplify multiple interaction with the
same object: with (context object passed, but is the receiver “this”)

val snake = Animal("snake")
with(snake) { // With “with”
 makeSound()
}

val snake = Animal("snake") // Without “with”
snake.makeSound()

Scope Functions

33

Scope functions are used to simplify multiple interaction with the
same object: run (context object is the receiver “this”, but returns the
lambda result)

val snake = Animal("snake") // With “run”
val legNumbers = snake.run() {

legCount = 0
howManyLegs()

}

val snake = Animal("snake") // Without “run”
snake.legCount = 0
val legNumbers = snake.howManyLegs()

Scope Functions

34

Scope functions are used to simplify multiple interaction with the
same object: also (context object is the lambda argument “it”, but
returns the object)

Scope Functions

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.also { // With Also

it.add("six")
println(it)

}

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.add("six") // Without Also
println(numbers)

Delegation

There may be cases where your class implements an interface in the same
way as it is implemented elsewhere→ you can delegate the implementation.

interface Animal {
val legCount: Int

}

class Cat
(override val legCount: Int) : Animal

class PersianCat (val cat : Cat)
: Animal by cat {

fun someOtherMethod () { … }
}
// This will automatically implement all the
interface members of Animal in
PersianCat by invoking the same member
on cat.

Delegation

Delegation can be used to do
lazy loading (i.e. evaluating an
expression only the first time it
is invoked). Kotlin also has a
built-in expression

import kotlin.reflect.KProperty
class DelegatedProperty (private val default: String) {

private var _value: String? = null
private var loaded = false
operator fun getValue(

thisRef: Any?, property : KProperty<*>): String? {
if (loaded) return _value
_value = retrieveValue()
loaded = true
return _value

}
}

// In your body: the by redirects to getValue()
val name by DelegatedProperty("myDef")

val name: String? by lazy {
retrieveValue()

}

37

● Explicit types
● Strictly OOP
● Not Null Safe
● Explicit set & get

● Type inference
● Not necessarily OOP
● Null Safe
● Implicit set & get
● + Extension functions
● + Scope Functions
● + Lambdas
● + Implicit Casting
● + Structured Concurrency

○ Coroutines (TBC)

Kotlin & Java: Differences

38

How to set up an Android project in Kotlin?
Literally in the same way it is done for Java!
● Still uses XML resources
● Everything still applies to what we will see:

○ Resources
○ Activity Lifecycle
○ Fragments
○ Intents
○ Views

● Only thing that changes is the syntax…

Kotlin for Android

39

BUT…
There are certains things that can only be done with Kotlin…

● Android Jetpack Compose projects (similar to Flutter)
● Structured concurrency (Coroutines & Flows)

Mainly because Java is there for historical and retrocompatibility
reasons.
Mainly library issues… because they are both Turing complete they
have virtually the same capabilities!

Kotlin for Android

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

