
Android Architecture

Federico Montori
federico.montori2@unibo.it

Laboratorio di Applicazioni Mobili
Bachelor in Computer Science &

Computer Science for Management

University of Bologna

1

mailto:federico.montori2@unibo.it

Table of Contents

● Android History
● Android Data
● Android Architecture

○ Kernel
○ HAL
○ NDK
○ ART
○ APIs
○ System Apps

● Overview on App Components
● XML
● App Distribution

2

3

Android

Android is a Linux-based platform for mobile
touchscreen devices …
● Operating System
● Middleware
● Applications
● Software Development Kit (SDK)

 Which mobile devices?

SMARTPHONES TABLETS EREADERS ANDROID TV GOOGLE GLASSES AUTOMOTIVE

4

Android
● Google buys Android from the Android Inc.

● Open Handset Alliance (OHA) created for open standards
for mobile devices. Partners of OHA: Google, Motorola, Samsung,
Vodafone, T-Mobile, etc.

● Android 1.0 Released

● The first Android smartphone: G1 HTC-Dream
Few Google apps integrated directly with the OS

● Android 1.1 Released
● Android 1.5 (CupCake) Released

2005

2006

2007

2008

2009

Time
● External Apps
● On-screen keyboard

5

Android
● Android 1.6 (Donut) Released

● Android 2.0 (Eclair) Released

● Android 2.2 (Froyo) Released

● Android 2.3 (Gingerbread) Released

● Android 3.0 (Honeycomb) Released
(First version for devices with larger screens such as tablets)

● Android 4.0 (Ice-Cream Sandwich) Released. (It merges the
3.x tab centric design and the v2.x phone based design into a single version.)

2008

2009

2010

2011

2012

Time

● Different screen sizes
● CDMA
● speech-to-text
● pinch-to-zoom

● bottom dock
● voice actions

● The “design
release”

● swiping for dismissing
● card appearance

6

Android
● Android 4.1 (Jelly Bean) Released
● Android 4.4 (Kitkat) Released

○ Wireless printing capability
○ Ability for applications to use "immersive mode”
○ Performance optimization
○ New experimental runtime virtual machine, ART…

API Level 19 (Android 4.4):
○

○ Support to new embedded sensors (e.g. STEP_DETECTOR)
○ Adaptive video playback functionalities
○ Read and write SMS and MMS messages
○ (managing default text messaging client)

2012

2013

Time

2014

OK GOOGLE!
(but only when the screen is on…)

7

Android
● Android 5.0 (Lollipop) Released

○ Material Design!
○ OK Google (the true one)
○ Lots of bugs...

● Android 6.0 (Marshmallow) Released
○ Fingerprint
○ USB-C
○ Runtime Permissions!!!

● Android 7.0 (Nougat) Released … pixel!
○ Google Assistant
○ Split screen, data saver...

2014

2016

Time

2015

8

Android
● Android 8.0 (Oreo) Released

○ Notification Channels and Snooze
○ picture-in-picture
○ Android Apps on Chromebooks

● Android 9.0 (Pie) Released
○ Brightness & Battery Management
○ Hybrid gestures system
○ Privacy & Security

● Android 10.0 (Q) Released
○ Expanded permission
○ swipe-driven
○ ...No more sweets!!!

2017

2019

Time

2018

9

Android
● In February Android 11.0 (R) Released

○ One-time permissions for temporary features (location,
microphone and camera)

○ Exposure notification and privacy fixes
● In October Android 12.0 (S) Released

○ Location can be blurred even if required
○ Mostly optimizations and
○ graphical improvements

● Android 13.0 (Tiramisu) Released
○ per-app language personalization
○ permission for notification
○ gallery restricted access to apps

2021

2020

Time

2022

● In October 2023 Android 14.0 (Upside Down Cake)
Released
○ Mostly a UI improvement
○ Battery optimization

10

Android

2024

2023

Time

2025

Android Data

Takeaway message:

There is a lot of versioning
to deal with…

11

Android Data

Takeaway
message:

There is a lot of
different devices
to take into
account

11,868 different devices in 2013!

12

Android Data

Takeaway
message:

There is a lot of
different devices
to take into
account

24,093 different devices in 2015!

13

Android Data

Takeaway
message:

There is a lot of
different devices
to take into
account

14

Android Data

Takeaway
message:

There is a lot of
different devices
to take into
account

15

Android Data

Takeaway
message:

There is a lot of
different
conditions that
we need to take
into account

16

Android
Architecture

The rest of the course will
be dedicated on how to
build Apps…

… but what is underneath?

17

Android Architecture

OS is Built on top of Linux kernel
Advantages:
● Portability (i.e. easy to compile on different

hardware architectures)
● Security (e.g. secure multi-process

environment)
● Power Management
● Android Runtime (ART) relies on the kernel

for threads and memory management
● Manufacturers build drivers on top of a

reliable kernel 18

● User based permission model
● Processes are isolated
● Inter-process communication (IPC)
● Resources are protected from other processes
● Each application has its own User ID (UID)

○ This means that in Android, each App is a different Linux User
● Application Sandbox (process isolation)
● Verified boot

Android Architecture

19

● Android 5.0:

○ Mandatory Access Control (MAC) between system and apps, all

third-party apps ran within the same SELinux context so inter-app

isolation was primarily enforced by UID-based sandbox.

● Android 8.0:

○ limited system calls available to user-level apps

Android Architecture

20

● Android 9.0:

○ all non-privileged apps with SDK version >= 28 must run in individual

SELinux sandboxes, providing MAC on a per-app basis

● Android 10:

○ apps have a limited raw view of the filesystem, with no direct access

to paths like /sdcard/DCIM. However, apps retain full raw access to

their package-specific paths

Android Architecture

21

Android Architecture

Hardware Abstraction Layer (HAL)

Advantages:

● Shadows the real device
● Manages different devices of the same

type
● Standard interface to expose lower level

capabilities to higher level APIs

22

HAL: Standard interface defined by Android that manufacturers have to

implement – Android is agnostic about lower level driver implementations.

Android Architecture

23

● Application developers rely on

common APIs

● Depending on the hardware,

appropriate libraries are loaded

Android Architecture

Native C/C++ Libraries

● Graphics (Surface Manager)
● Multimedia (Media Framework)
● Database DBMS (SQLite)
● Font Management (FreeType)
● WebKit
● C libraries (Bionic)

24

The NDK Enables C/C++ coding
● Useful if you want to interact/extend with some native libraries

○ Performance
○ Reuse your C/C++ libraries

● JAVA APIs are provided for most used libraries
● NDK can be installed as an Android Studio plugin

Android Architecture

25

public class myNDKActivity extends Activity {
public native void doNothing() { }

}

the NDK can be useful for cases in which you need to do one or more of the
following:
● Squeeze extra performance out of a device to achieve low latency or run

computationally intensive applications, such as games or physics
simulations: https://developer.android.com/ndk/guides

● Reuse your own or other developers' C or C++ libraries.
Usage:
● Use the NDK to compile C and C++ code into a native library and

package it into your APK using Gradle.
● Your Java code can then call functions in your native library through the

Java Native Interface (JNI) framework.

Android Architecture

26

https://developer.android.com/ndk/guides

Android Architecture

Android Runtime (ART)

It is a Java Virtual Machine (JVM)
implementation (not using the Oracle JVM)
optimized for memory-constrained devices

It has everything that an ordinary JVM has:
● compiles Java code into bytecode
● interprets bytecode
a little differently though…

27

Starting from Android 5.0, ART is used instead of Dalvik
Several enhancements such as stack size, error handling, Optimized Garbage collection, AOT...

● Designed to run multiple VM on low end devices
● Runs DEX bytecode

Ahead-of-time (AOT) and Just-in-time (JIT) compilation
● AOT: At install time, ART compiles APPs using

an on-device tool called dex2oat
○ Code compiled at installation

● JIT: code profiling
○ Code partially interpreted when

compiled is not available

Android Architecture

28

There is a lot more to it nowadays.

● DEX files need to be interpreted by the VM
(or JIT compiled).

● OAT files are already “machine level” code,
so more similar to pure compilation.

● We have a daemon that looks for
uncompiled apps when the device is idle and
compiles them through.

● Compiled apps may be recompiled
sometimes by JIT if the conditions have
changed…

Android Architecture

29

● AOT and JIT replace the code interpretation
that was classic for Java.

● However, their management is complex (see
aside).

● Do not confuse AOT and JIT with the
“compilation” that takes place when
developing the app and outputs an APK…
○ The latter outputs bytecode, which still

is not machine code.

Android
Architecture

30

Android Architecture

APIs (Core Components of Android)

● Activity Manager
● Packet Manager
● Telephony Manager
● Location Manager
● Contents Provider
● Notification Manager
● … 31

● View System
○ Through which you build the APP UI

● Resource Manager
○ Through which you handle resources

● Notification Manager
○ Through which you can access to different kind of notifications

● Activity Manager
○ Which handles the Activity lifecycle and provides a back stack

● Content Providers
○ To share data among APPs

Android Architecture

32

Android Architecture

System Apps

Applications that come with the system by
default and have enhanced privileges.

e.g. the alarm clock can wake up the phone
even if it is turned off. This is
unimplementable by a developer.

33

App Components

● Activities

● Views

● Resources

● Intents

● Services

● Persistence

34

App Components

● An Activity corresponds to a single screen
of the Application.

● An Application can be composed of
multiples screens (Activities).

● The Home Activity is shown when the user
launches an application.

● Different activities can exchange
information one with each other.

35

Hello World!

Android HelloWorld

Button1

App Components

● Each activity is composed by a list of graphics components.
● Some of these components (called Views) can interact with the user

by handling events (e.g. Buttons).
● Two ways to build the graphic interface:

Programmatic Approach:

36

/* Java Code */
Button button = new Button (this);
TextView text = new TextView();
text.setText(“Hello world”);

App Components

● Each activity is composed by a list of graphics components.
● Some of these components (called Views) can interact with the user

by handling events (e.g. Buttons).
● Two ways to build the graphic interface:

Declarative Approach:

37

/* XML Code */
<TextView android.text=@string/hello” android:textcolor=@color/blue
android:layout_width=“fill_parent” android:layout_height=“wrap_content” />
<Button android.id=“@+id/Button01” android:textcolor=“@color/blue”
android:layout_width=“fill_parent” android:layout_height=“wrap_content” />

XML

Extensible Markup Language (XML) lets you define and store data in a
shareable manner.
Data is organized in a tree and each element contains text and/or
children and it is wrapped between a start and an end tag.

38

<root> <!-- This is an XML comment -->
<child1 name="john">

<exam id="LAM"> 30 </ leaf>
</ child1>
<child2 name="jack" />

</ root>

App Components

● Build the application layout through
XML files.

● Define different XML layouts for
different devices

● At runtime, Android detects the current
device configuration and loads the
appropriate resources

● No need to recompile!
● This stands for all other resources

39

Device 1
HIGH screen pixel density

Device 2
LOW screen pixel density

XML Layout File
Device 1

XML Layout File
Device 2

Java App Code

App Components

40

Android applications typically use both the approaches!

DECLARATIVE APPROACH

PROGRAMMATIC APPROACH

Define the Application layouts
and resources used by the
Application (e.g. labels).

Manages the events, and
handles the interaction with the
user.

XML Code

Java Code

App Components

41

Views can generate events (caused by human interactions)
that must be managed by the Android-developer through
CALLBACKS (from now on you need to know what these are)

public void onClick(View arg0) {
if (arg0 == Button) { /* Manage Button events */ } }

B
ut

to
n

Te
xt

E
di

t

App Components

42

Main difference between Android programming and Java (Oracle)
programming:
● Mobile devices have constrained resource capabilities
● Activity lifecycle depends on users’ choice (i.e. change of

visibility) as well as on system constraints (i.e. memory
shortage).

● Developer must implement lifecycle methods to account for
state changes of each Activity … there is no main function.

This is a reactive programming style!

App Components

43

● Intents: asynchronous messages to activate core Android components (e.g.
Activities).

● Explicit Intent 🡪 The component (e.g. Activity1) specifies the destination of the
intent (e.g. Activity2).

LOGIN

PASSWORD

Login

luca

Welcome Luca!

Login Intent

A
ct

iv
ity

1

A
ct

iv
ity

2

App Components

44

● Intents: asynchronous messages to activate core Android components (e.g.
Activities).

● Implicit Intent →The component (e.g. Activity1) specifies the type of the intent
(e.g. “View a video”).

View

Implicit Intent

A
ct

iv
ity

1

A
ct

iv
ity

3
A

ct
iv

ity
2

Multiple choices
might be available

to the user! } Intent-
Filters

App Components

45

● Services: like Activities, but run in background and do not provide an user
interface.

● Used for non-interactive tasks (e.g. networking).

Starting Destroyed

Running

(on background)

onCreate()
onStart() onDestroy()

App Components

46

● Android applications run with a distinct system identity (Linux user ID and
group ID), in an isolated way.

● Applications must explicitly share resources and data. They do this by
declaring the permissions they need for additional capabilities.

● Applications statically declare the permissions they require.
● User must give his/her consensus upon using the feature.
● Permission must be asked at runtime too.

<uses-permission
android:name=“android.permission.ACCESS_FINE_LOCATION" />

ANDROIDMANIFEST.XML

App Distribution

47

● Each Android application is
contained in a single APK file.

● Java Bytecode
● Resources (e.g. images.

videos, XML layout files)
● Libraries (optimal native

C/C++ code)

APK
FILE

XML
Files

C

Questions?

federico.montori2@unibo.it

mailto:federico.montori2@unibo.it

