
Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.28

Two Types of Semaphores

• Counting semaphore – integer value can range over an
unrestricted domain.

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement.

• Can implement a counting semaphore S as a binary
semaphore.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.29

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.30

Bounded-Buffer Problem

public class BoundedBuffer  {
public BoundedBuffer() { /* see next slides */  }
public void enter() { /* see next slides */  }
public Object remove() { /* see next slides */  }

    private static final int   BUFFER_SIZE = 2;
   private Semaphore mutex;
   private Semaphore empty;
   private Semaphore full;
   private int in, out;
   private Object[] buffer;
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.31

Bounded Buffer Constructor

public BoundedBuffer() {

       // buffer is initially empty

       count = 0;

       in = 0;

       out = 0;

       buffer = new Object[BUFFER_SIZE];

       mutex = new Semaphore(1);

       empty = new Semaphore(BUFFER_SIZE);

       full = new Semaphore(0);

   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.32

enter() Method

public void enter(Object item) {

      empty.P();

      mutex.P();

      // add an item to the buffer

      buffer[in] = item;

      in = (in + 1) % BUFFER_SIZE;

      mutex.V();

      full.V();

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.33

remove() Method

public Object remove() {
      full.P();
      mutex.P();

      // remove an item from the buffer
      Object item = buffer[out];
      out = (out + 1) % BUFFER_SIZE;

  mutex.V();
      empty.V();

      return item;
   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.34

Readers-Writers Problem: Reader

public class Reader extends Thread {
   public Reader(Database db) {
   server = db;
   }
   public void run() {
   int c;

while (true) {
c = server.startRead();

       // now reading the database
       c = server.endRead();

}
   }
   private Database server;
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.35

Readers-Writers Problem: Writer

public class Writer extends Thread {
   public Writer(Database db) {
   server = db;
   }
   public void run() {

while (true) {
server.startWrite();

       // now writing the database
       server.endWrite();

}
   }
   private Database server;
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.36

Readers-Writers Problem (cont)

public class Database
{
   public Database() {
      readerCount = 0;
      mutex = new Semaphore(1);
      db = new Semaphore(1);
   }

public int startRead() { /* see next slides */ }
public int endRead()  { /* see next slides */ }
public void startWrite() { /* see next slides */ }

   public void endWrite()  { /* see next slides */ }

   private int readerCount; // number of active readers
   Semaphore mutex;   // controls access to readerCount
   Semaphore db;         // controls access to the database
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.37

startRead() Method

public int startRead() {
      mutex.P();
      ++readerCount;

      // if I am the first reader tell all others
      // that the database is being read
      if (readerCount == 1)
         db.P();

      mutex.V();
      return readerCount;
   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.38

endRead() Method

public int endRead() {
      mutex.P();
      --readerCount;

      // if I am the last reader tell all others
      // that the database is no longer being read
      if (readerCount == 0)
         db.V();

      mutex.V();
      return readerCount;
   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.39

Writer Methods

public void startWrite() {

      db.P();

}

public void endWrite() {

      db.V();

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.40

Dining-Philosophers Problem

• Shared data

Semaphore chopStick[]  = new Semaphore[5];



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.41

Dining-Philosophers Problem (Cont.)

• Philosopher i:
while (true) {

// get left chopstick
chopStick[i].P();
// get right chopstick
chopStick[(i + 1) % 5].P();

// eat for awhile

//return left chopstick
 chopStick[i].V();
// return right chopstick
 chopStick[(i + 1) % 5].V();

// think for awhile
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.49

Java Synchronization

• Synchronized, wait(), notify() statements

• Multiple Notifications

• Block Synchronization

• Java Semaphores

• Java Monitors



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.50

synchronized Statement

• Every object has a lock associated with it.

• Calling a synchronized method requires “owning” the lock.

• If a calling thread does not own the lock (another thread already
owns it), the calling thread is placed in the wait set for the
object’s lock.

• The lock is released when a thread exits the synchronized
method.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.51

Entry Set



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.52

synchronized enter() Method

public synchronized void enter(Object item) {

while (count == BUFFER_SIZE)

Thread.yield();

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.53

synchronized remove() Method

public synchronized Object remove() {

Object  item;

while (count == 0)

Thread.yield();

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.54

The wait() Method

• When a thread calls wait(), the following occurs:

- the thread releases the object lock.

- thread state is set to blocked.

- thread is placed in the wait set.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.55

Entry and Wait Sets



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.56

The notify() Method

• When a thread calls notify(), the following occurs:

- selects an arbitrary thread T from the wait set.

- moves T to the entry set.

- sets T to Runnable.

T can now compete for the object’s lock again.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.57

enter() with wait/notify Methods

public synchronized void enter(Object item) {
while (count == BUFFER_SIZE)

try {
wait();

}
catch (InterruptedException e) { }

}
++count;
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;
notify();

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.58

remove() with wait/notify Methods

public synchronized Object remove() {
Object  item;
while (count == 0)

try {
wait();

}
catch (InterruptedException e) { }

--count;
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
notify();
return item;

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.59

Multiple Notifications

• notify() selects an arbitrary thread from the wait set. *This may
not be the thread that you want to be selected.

• Java does not allow you to specify the thread to be selected.

• notifyAll() removes ALL threads from the wait set and places
them in the entry set. This allows the threads to decide among
themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.60

Reader Methods with Java
Synchronization

public class Database {
   public Database() {
      readerCount = 0;
      dbReading = false;
      dbWriting = false;
   }

public synchronized int startRead() { /* see next slides */ }
public synchronized int endRead()  { /* see next slides */ }
public synchronized void startWrite() { /* see next slides */ }

   public synchronized void endWrite()  { /* see next slides */ }

   private int readerCount;
   private boolean dbReading;
   private boolean dbWriting;
}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.61

startRead() Method

public synchronized int startRead() {

while (dbWriting == true) {

try {

wait();

}

catch (InterruptedException e) { }

++readerCount;

if (readerCount == 1)

dbReading = true;

return readerCount;

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.62

endRead() Method

public synchronized int endRead() {

      --readerCount

      if (readerCount == 0)

         db.notifyAll();

      return readerCount;

   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.63

Writer Methods

public void startWrite() {
      while (dbReading == true || dbWriting == true)

try {
wait();

}
catch (InterruptedException e) { }
dbWriting = true;

}

public void endWrite() {
dbWriting = false;
notifyAll();

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.64

Block Synchronization

• Blocks of code – rather than entire methods – may be declared
as synchronized.

• This yields a lock scope that is typically smaller than a
synchronized method.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.65

Block Synchronization (cont)

Object mutexLock = new Object();

. . .

public void someMethod() {

// non-critical section

synchronized(mutexLock) {

// critical  section

}

// non-critical section

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.66

Java Semaphores

• Java does not provide a semaphore, but a basic semaphore can
be constructed using Java synchronization mechanism.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.67

Semaphore Class

public class Semaphore {

   public Semaphore() {

value = 0;

}

   public Semaphore(int v) {

value = v;

}

   public synchronized void P() { /* see next slide */ }

public synchronized void V() { /* see next slide */ }

   private int value;

}



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.68

P() Operation

public synchronized void P() {

      while (value <= 0) {

         try {

            wait();

         }

         catch (InterruptedException e) { }

      }

      value --;

   }



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.69

V() Operation

public synchronized void V() {

      ++value;

      notify();

   }



Two brothers, Joe and John, share a common bank account, and can, independently, read the
balance, make a deposit, and withdraw some money.

We can model the bank account as an object of the following class:

class Account {
private double balance;

public Account(double initialDeposit) {
balance = initialDeposit;

}

public double getBalance() {
return balance;

}

public void deposit(double amount) {
balance += amount;

}

public void withdraw(double amount) {
if ( balance >= amount ) { balance -= amount; }

} // no negative balance allowed

}



We can model the account holders as two threads:

class AccountHolder extends Thread {
private Account acc;

public AccountHolder(Account a) {
acc = a;

}

public void run() {
...
acc.withdraw(100);
...

}
}



Creation of the account and of the two account holders:

...
Account accnt = new Account(150);
AccountHolder John = new AccountHolder(accnt);
AccountHolder Joe = new AccountHolder(accnt);
John.start(); Joe.start()
...

Note: John and Joe will share the same account which accnt refers to.



Example of interference

At the beginning: balance is 150

John: accnt.withdraw(100) Joe: accnt.withdraw(100)

balance >= 100 ?
|
| yes balance >= 100 ?
| |
V | yes

balance = balance - 100 |
V

balance = balance - 100

At the end: balance is -50.



There is a problem also with the deposit method.

public void deposit(double amount) {
balance += amount;

}

At the beginning: balance is 150

John: accnt.deposit(100) Joe: accnt.deposit(100)

b = balance (b = 150)
|
| b = balance (b = 150)
V |

b += 100 (b = 250) |
| V
| b += 100 (b = 250)
V |

balance = b |
V

balance = b

At the end: balance is 250 (instead of 350).



Note that there is a problem even if one of the methods updates the field and the other only
reads the field. In general reading a field that is being updated by another thread might give
unpredictable results.

There is no problem, on the contrary, with methods accessing common fields only in reading
mode. Such read-only methods can (and should) run concurrently, thus optimizing execution time.

We have to incapsulate the critical sections so that they will be executed "atomically", i.e.
without interleaving.



John: accnt.deposit(100) Joe: accnt.deposit(100)
+--------------------------+
| | delay until the critical section
| b = balance (b = 150) | executed by John is completed
| | | ...
| V |
| b += 100 (b = 250) |
| | |
| V | ...
| balance = b |
+--------------------------+ John has terminated, Joe can start

+--------------------------+
| |
| b = balance (b = 250) |
| | |
| V |
| b += 100 (b = 350) |
| | |
| V |
| balance = b |
+--------------------------+



In Java, we can specify that we want a method to be executed atomically by declaring it syn-
chronized.

Synchronized methods are mutually exclusive, i.e. the actions of two threads executing syn-
chonized methods on the same objects cannot be interleaved

Example: the correct definition of Account



class Account {
private double balance;

public Account(double initialDeposit) {
balance = initialDeposit;

}

public synchronized double getBalance() {
------------

return balance;
}

public synchronized void deposit(double amount) {
------------

balance += amount;
}

public synchronized void withdraw(double amount) {
------------

if ( balance >= amount ) { balance -= amount; }
} // no negative balance allowed

}



John: accnt.deposit(100)
Joe: accnt.deposit(100)

acquire the lock on accnt
+--------------------------+ try to acquire the lock on accnt
| | since the lock is not available,
| b = balance (b = 150) | go in the "waiting list" of accnt
| | |
| | | ... wait ...
| V |
| b += 100 (b = 250) |
| | |
| | |
| V |
| balance = b | ... wait ...
| |
| |



| |
| | ... wait ...
| |
| |
+--------------------------+
release the lock on accnt

acquire the lock on accnt
+--------------------------+
| |
| b = balance (b = 250) |
| | |
| | |
| V |
| b += 100 (b = 350) |
| | |
| | |
| V |
| balance = b |
| |
+--------------------------+
release the lock on accnt



A few remarks about the locks

– Non synchronized methods do not require the lock, hence they can always be interleaved with
each other and also with synchronized methods.

– A lock is "per thread". This means that nested invokations of synchronized methods on the
same object will proceed without blocking.

– More precisely, there is a counter associated to a lock, which is incremented each time the
thread enters a synchronized method on the object, and decremented when it completes a
synchronized method. (It is the "level of nesting")



class C {

...

public synchronized m1() {
------------

... m2(); ...;
}

public synchronized m2(){
------------

...
}

}



obj.m1()

if obj.lock == 0
then obj.lock = 1 (acquire lock)
else go to wait list of obj

+--------------------------+
| |
| ... |
| |
| obj.m2() |
| obj.lock = 2 |
| +-------------------+ |
| | | |
| | ... | |
| | | |
| +-------------------+ |
| obj.lock = 1 |
| |
+--------------------------+

obj.lock = 0 (release lock)


