
Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.28

Two Types of Semaphores

• Counting semaphore – integer value can range over an
unrestricted domain.

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement.

• Can implement a counting semaphore S as a binary
semaphore.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.29

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.30

Bounded-Buffer Problem

public class BoundedBuffer {
public BoundedBuffer() { /* see next slides */ }
public void enter() { /* see next slides */ }
public Object remove() { /* see next slides */ }

 private static final int BUFFER_SIZE = 2;
 private Semaphore mutex;
 private Semaphore empty;
 private Semaphore full;
 private int in, out;
 private Object[] buffer;
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.31

Bounded Buffer Constructor

public BoundedBuffer() {

 // buffer is initially empty

 count = 0;

 in = 0;

 out = 0;

 buffer = new Object[BUFFER_SIZE];

 mutex = new Semaphore(1);

 empty = new Semaphore(BUFFER_SIZE);

 full = new Semaphore(0);

 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.32

enter() Method

public void enter(Object item) {

 empty.P();

 mutex.P();

 // add an item to the buffer

 buffer[in] = item;

 in = (in + 1) % BUFFER_SIZE;

 mutex.V();

 full.V();

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.33

remove() Method

public Object remove() {
 full.P();
 mutex.P();

 // remove an item from the buffer
 Object item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;

 mutex.V();
 empty.V();

 return item;
 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.34

Readers-Writers Problem: Reader

public class Reader extends Thread {
 public Reader(Database db) {
 server = db;
 }
 public void run() {
 int c;

while (true) {
c = server.startRead();

 // now reading the database
 c = server.endRead();

}
 }
 private Database server;
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.35

Readers-Writers Problem: Writer

public class Writer extends Thread {
 public Writer(Database db) {
 server = db;
 }
 public void run() {

while (true) {
server.startWrite();

 // now writing the database
 server.endWrite();

}
 }
 private Database server;
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.36

Readers-Writers Problem (cont)

public class Database
{
 public Database() {
 readerCount = 0;
 mutex = new Semaphore(1);
 db = new Semaphore(1);
 }

public int startRead() { /* see next slides */ }
public int endRead() { /* see next slides */ }
public void startWrite() { /* see next slides */ }

 public void endWrite() { /* see next slides */ }

 private int readerCount; // number of active readers
 Semaphore mutex; // controls access to readerCount
 Semaphore db; // controls access to the database
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.37

startRead() Method

public int startRead() {
 mutex.P();
 ++readerCount;

 // if I am the first reader tell all others
 // that the database is being read
 if (readerCount == 1)
 db.P();

 mutex.V();
 return readerCount;
 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.38

endRead() Method

public int endRead() {
 mutex.P();
 --readerCount;

 // if I am the last reader tell all others
 // that the database is no longer being read
 if (readerCount == 0)
 db.V();

 mutex.V();
 return readerCount;
 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.39

Writer Methods

public void startWrite() {

 db.P();

}

public void endWrite() {

 db.V();

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.40

Dining-Philosophers Problem

• Shared data

Semaphore chopStick[] = new Semaphore[5];

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.41

Dining-Philosophers Problem (Cont.)

• Philosopher i:
while (true) {

// get left chopstick
chopStick[i].P();
// get right chopstick
chopStick[(i + 1) % 5].P();

// eat for awhile

//return left chopstick
 chopStick[i].V();
// return right chopstick
 chopStick[(i + 1) % 5].V();

// think for awhile
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.49

Java Synchronization

• Synchronized, wait(), notify() statements

• Multiple Notifications

• Block Synchronization

• Java Semaphores

• Java Monitors

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.50

synchronized Statement

• Every object has a lock associated with it.

• Calling a synchronized method requires “owning” the lock.

• If a calling thread does not own the lock (another thread already
owns it), the calling thread is placed in the wait set for the
object’s lock.

• The lock is released when a thread exits the synchronized
method.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.51

Entry Set

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.52

synchronized enter() Method

public synchronized void enter(Object item) {

while (count == BUFFER_SIZE)

Thread.yield();

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.53

synchronized remove() Method

public synchronized Object remove() {

Object item;

while (count == 0)

Thread.yield();

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.54

The wait() Method

• When a thread calls wait(), the following occurs:

- the thread releases the object lock.

- thread state is set to blocked.

- thread is placed in the wait set.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.55

Entry and Wait Sets

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.56

The notify() Method

• When a thread calls notify(), the following occurs:

- selects an arbitrary thread T from the wait set.

- moves T to the entry set.

- sets T to Runnable.

T can now compete for the object’s lock again.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.57

enter() with wait/notify Methods

public synchronized void enter(Object item) {
while (count == BUFFER_SIZE)

try {
wait();

}
catch (InterruptedException e) { }

}
++count;
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;
notify();

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.58

remove() with wait/notify Methods

public synchronized Object remove() {
Object item;
while (count == 0)

try {
wait();

}
catch (InterruptedException e) { }

--count;
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
notify();
return item;

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.59

Multiple Notifications

• notify() selects an arbitrary thread from the wait set. *This may
not be the thread that you want to be selected.

• Java does not allow you to specify the thread to be selected.

• notifyAll() removes ALL threads from the wait set and places
them in the entry set. This allows the threads to decide among
themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.60

Reader Methods with Java
Synchronization

public class Database {
 public Database() {
 readerCount = 0;
 dbReading = false;
 dbWriting = false;
 }

public synchronized int startRead() { /* see next slides */ }
public synchronized int endRead() { /* see next slides */ }
public synchronized void startWrite() { /* see next slides */ }

 public synchronized void endWrite() { /* see next slides */ }

 private int readerCount;
 private boolean dbReading;
 private boolean dbWriting;
}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.61

startRead() Method

public synchronized int startRead() {

while (dbWriting == true) {

try {

wait();

}

catch (InterruptedException e) { }

++readerCount;

if (readerCount == 1)

dbReading = true;

return readerCount;

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.62

endRead() Method

public synchronized int endRead() {

 --readerCount

 if (readerCount == 0)

 db.notifyAll();

 return readerCount;

 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.63

Writer Methods

public void startWrite() {
 while (dbReading == true || dbWriting == true)

try {
wait();

}
catch (InterruptedException e) { }
dbWriting = true;

}

public void endWrite() {
dbWriting = false;
notifyAll();

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.64

Block Synchronization

• Blocks of code – rather than entire methods – may be declared
as synchronized.

• This yields a lock scope that is typically smaller than a
synchronized method.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.65

Block Synchronization (cont)

Object mutexLock = new Object();

. . .

public void someMethod() {

// non-critical section

synchronized(mutexLock) {

// critical section

}

// non-critical section

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.66

Java Semaphores

• Java does not provide a semaphore, but a basic semaphore can
be constructed using Java synchronization mechanism.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.67

Semaphore Class

public class Semaphore {

 public Semaphore() {

value = 0;

}

 public Semaphore(int v) {

value = v;

}

 public synchronized void P() { /* see next slide */ }

public synchronized void V() { /* see next slide */ }

 private int value;

}

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.68

P() Operation

public synchronized void P() {

 while (value <= 0) {

 try {

 wait();

 }

 catch (InterruptedException e) { }

 }

 value --;

 }

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19997.69

V() Operation

public synchronized void V() {

 ++value;

 notify();

 }

Two brothers, Joe and John, share a common bank account, and can, independently, read the
balance, make a deposit, and withdraw some money.

We can model the bank account as an object of the following class:

class Account {
private double balance;

public Account(double initialDeposit) {
balance = initialDeposit;

}

public double getBalance() {
return balance;

}

public void deposit(double amount) {
balance += amount;

}

public void withdraw(double amount) {
if (balance >= amount) { balance -= amount; }

} // no negative balance allowed

}

We can model the account holders as two threads:

class AccountHolder extends Thread {
private Account acc;

public AccountHolder(Account a) {
acc = a;

}

public void run() {
...
acc.withdraw(100);
...

}
}

Creation of the account and of the two account holders:

...
Account accnt = new Account(150);
AccountHolder John = new AccountHolder(accnt);
AccountHolder Joe = new AccountHolder(accnt);
John.start(); Joe.start()
...

Note: John and Joe will share the same account which accnt refers to.

Example of interference

At the beginning: balance is 150

John: accnt.withdraw(100) Joe: accnt.withdraw(100)

balance >= 100 ?
|
| yes balance >= 100 ?
| |
V | yes

balance = balance - 100 |
V

balance = balance - 100

At the end: balance is -50.

There is a problem also with the deposit method.

public void deposit(double amount) {
balance += amount;

}

At the beginning: balance is 150

John: accnt.deposit(100) Joe: accnt.deposit(100)

b = balance (b = 150)
|
| b = balance (b = 150)
V |

b += 100 (b = 250) |
| V
| b += 100 (b = 250)
V |

balance = b |
V

balance = b

At the end: balance is 250 (instead of 350).

Note that there is a problem even if one of the methods updates the field and the other only
reads the field. In general reading a field that is being updated by another thread might give
unpredictable results.

There is no problem, on the contrary, with methods accessing common fields only in reading
mode. Such read-only methods can (and should) run concurrently, thus optimizing execution time.

We have to incapsulate the critical sections so that they will be executed "atomically", i.e.
without interleaving.

John: accnt.deposit(100) Joe: accnt.deposit(100)
+--------------------------+
| | delay until the critical section
| b = balance (b = 150) | executed by John is completed
| | | ...
| V |
| b += 100 (b = 250) |
| | |
| V | ...
| balance = b |
+--------------------------+ John has terminated, Joe can start

+--------------------------+
| |
| b = balance (b = 250) |
| | |
| V |
| b += 100 (b = 350) |
| | |
| V |
| balance = b |
+--------------------------+

In Java, we can specify that we want a method to be executed atomically by declaring it syn-
chronized.

Synchronized methods are mutually exclusive, i.e. the actions of two threads executing syn-
chonized methods on the same objects cannot be interleaved

Example: the correct definition of Account

class Account {
private double balance;

public Account(double initialDeposit) {
balance = initialDeposit;

}

public synchronized double getBalance() {

return balance;
}

public synchronized void deposit(double amount) {

balance += amount;
}

public synchronized void withdraw(double amount) {

if (balance >= amount) { balance -= amount; }
} // no negative balance allowed

}

John: accnt.deposit(100)
Joe: accnt.deposit(100)

acquire the lock on accnt
+--------------------------+ try to acquire the lock on accnt
| | since the lock is not available,
| b = balance (b = 150) | go in the "waiting list" of accnt
| | |
| | | ... wait ...
| V |
| b += 100 (b = 250) |
| | |
| | |
| V |
| balance = b | ... wait ...
| |
| |

| |
| | ... wait ...
| |
| |
+--------------------------+
release the lock on accnt

acquire the lock on accnt
+--------------------------+
| |
| b = balance (b = 250) |
| | |
| | |
| V |
| b += 100 (b = 350) |
| | |
| | |
| V |
| balance = b |
| |
+--------------------------+
release the lock on accnt

A few remarks about the locks

– Non synchronized methods do not require the lock, hence they can always be interleaved with
each other and also with synchronized methods.

– A lock is "per thread". This means that nested invokations of synchronized methods on the
same object will proceed without blocking.

– More precisely, there is a counter associated to a lock, which is incremented each time the
thread enters a synchronized method on the object, and decremented when it completes a
synchronized method. (It is the "level of nesting")

class C {

...

public synchronized m1() {

... m2(); ...;
}

public synchronized m2(){

...
}

}

obj.m1()

if obj.lock == 0
then obj.lock = 1 (acquire lock)
else go to wait list of obj

+--------------------------+
| |
| ... |
| |
| obj.m2() |
| obj.lock = 2 |
| +-------------------+ |
	...	
+-------------------+		
obj.lock = 1		
+--------------------------+

obj.lock = 0 (release lock)

