
5.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java 8th Edition

Chapter 5: Process Scheduling

Chapter 5: CPU Scheduling

Basic Concepts
Scheduling Criteria
Scheduling Algorithms
Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples
Algorithm Evaluation

Objectives

To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems
To describe various CPU-scheduling algorithms
To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system

Basic Concepts

Maximum CPU utilization obtained with multiprogramming
CPU I/O Burst Cycle Process execution consists of a cycle
of CPU execution and I/O wait
CPU burst distribution

Alternating Sequence of CPU And I/O Bursts

Histogram of CPU-burst Times

CPU Scheduler

Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to restart
that program

Dispatch latency time it takes for the dispatcher to stop one
process and start another running

Scheduling Criteria

CPU utilization keep the CPU as busy as possible
Throughput # of processes that complete their execution
per time unit
Turnaround time amount of time to execute a particular
process
Waiting time amount of time a process has been waiting in
the ready queue
Response time amount of time it takes from when a request
was submitted until the first response is produced, not output
(for time-sharing environment)

Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
 P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

P1 P3 P2

6 3 30 0

Applied Operating System Concepts Silberschatz, Galvin, and Gagne !19996.11

Shortest-Job-First (SJR) Scheduling

• Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest time.

• Two schemes:
– nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
– Preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time for a given
set of processes.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne !19996.12

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Applied Operating System Concepts Silberschatz, Galvin, and Gagne !19996.13

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next CPU Burst

Can only estimate the length
Can be done by using the length of previous CPU bursts, using
exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

1n

th
n nt

.1 1 nnn t

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

 =0
n+1 = n

Recent history does not count
 =1

 n+1 = tn

Only the actual last CPU burst counts
If we expand the formula, we get:

n+1 = tn+(1 -) tn -1
 +(1 -)j tn -j
 +(1 -)n +1

0

Since both and (1 -) are less than or equal to 1, each successive
term has less weight than its predecessor

Priority Scheduling

A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest priority (smallest
integer highest priority)

Preemptive
nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU
burst time
Problem Starvation low priority processes may never execute
Solution Aging as time progresses increase the priority of the
process

Example: priority scheduling

Process Burst time Priority

Resulting scheduling:

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.
If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.
Performance

q large FIFO
q small q must be large with respect to context switch,
otherwise overhead is too high

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Applied Operating System Concepts Silberschatz, Galvin, and Gagne !19996.18

Example: RR with Time Quantum = 20

Process Burst Time
P1 53
 P2 17
 P3 68
 P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
Each queue has its own scheduling algorithm

foreground RR
background FCFS

Scheduling must be done between the queues
Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.
Time slice each queue gets a certain amount of CPU time which
it can schedule amongst its processes; i.e., 80% to foreground in
RR
20% to background in FCFS

Multilevel Queue Scheduling

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are
available
Homogeneous processors within a multiprocessor
Asymmetric multiprocessing only one processor
accesses the system data structures, alleviating the need
for data sharing
Symmetric multiprocessing (SMP) each processor
is self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes
Processor affinity process has affinity for processor
on which it is currently running

soft affinity
hard affinity

Operating System Examples

Solaris scheduling
Windows XP scheduling
Linux scheduling

Solaris Dispatch Table

Windows XP Priorities

Linux Scheduling

Constant order O(1) scheduling time
Two priority ranges: time-sharing and real-time
Real-time range from 0 to 99 and nice value from 100 to 140
(figure 5.15)

Priorities and Time-slice length

End of Chapter 5

Java Thread Scheduling

JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

FIFO Queue is Used if There Are Multiple Threads With the Same
Priority

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note the JVM Does Not Specify Whether Threads are Time-Sliced or

Not

Time-Slicing

-Slicing, the yield() Method
May Be Used:

 while (true) {
 // perform CPU-intensive task
 . . .
 Thread.yield();
 }

This Yields Control to Another Thread of Equal Priority

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
 setPriority(Thread.NORM_PRIORITY + 2);

