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Module 2:  Computer-System Structures

• Computer System Operation

• I/O Structure

• Storage Structure

• Storage Hierarchy

• Hardware Protection

• General System Architecture



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.2

Computer-System Architecture
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Computer-System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular device type.

• Each device controller has a local buffer.

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller.

• Device controller informs CPU that it has finished its operation by
causing an interrupt.
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Common Functions of Interrupts

• Interrupts transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

• Interrupt architecture must save the address of the interrupted
instruction.

• Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either by an error
or a user request.

• An operating system is interrupt driven.
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Interrupt Handling

• The operating system preserves the state of the CPU by storing
registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what action should be
taken for each type of interrupt
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Interrupt Time Line For a Single Process Doing Output
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I/O Structure

• After I/O starts, control returns to user program only upon I/O
completion.

– wait instruction idles the CPU until the next interrupt

– wait loop (contention for memory access).

– At most one I/O request is outstanding at a time, no
simultaneous I/O processing.

• After I/O starts, control returns to user program without waiting
for I/O completion.

– System call – request to the operating system to allow user
to wait for I/O completion.

– Device-status table contains entry for each I/O device
indicating its type, address, and state.

– Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.8

Two I/O methods
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Device-Status Table

device: card reader 1

status: idle

device: line printer 3

status: busy

device: disk unit 1

status: idle

device: disk unit 2

status: idle

device: disk unit 3

status: busy

. 

. 

.

request for

line printer

address: 38546

length: 1372

request for

disk unit 3

file: xxx 

operation: read

address: 43046

length: 20000

request for

disk unit 3

file: yyy 

operation: write

address: 03458

length: 500
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Direct Memory Access (DMA) Structure

• Used for high-speed I/O devices able to transmit information at
close to memory speeds.

• Device controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention.

• Only one interrupt is generated per block, rather than the one
interrupt per byte.
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Storage Structure

• Main memory – only large storage media that the CPU can
access directly.

• Secondary storage – extension of main memory that provides
large nonvolatile storage capacity.

• Magnetic disks – rigid metal or glass platters covered with
magnetic recording material

– Disk surface is logically divided into tracks, which are
subdivided into sectors.

– The disk controller determines the logical interaction
between the device and the computer.
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Moving-Head Disk Mechanism
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Storage Hierarchy

• Storage systems organized in hierarchy.

– Speed

– cost

– volatility

• Caching – copying information into faster storage system; main
memory can be viewed as a last cache for secondary storage.



Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.14

Storage-Device Hierarchy
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Hardware Protection

• Dual-Mode Operation

• I/O Protection

• Memory Protection

• CPU Protection
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Dual-Mode Operation

• Sharing system resources requires operating system to ensure
that an incorrect program cannot cause other programs to
execute incorrectly.

• Provide hardware support to differentiate between at least two
modes of operations.

1. User mode – execution done on behalf of a user.

2. Monitor mode (also supervisor mode or system mode) –
execution done on behalf of operating system.
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Dual-Mode Operation (Cont.)

• Mode bit added to computer hardware to indicate the current
mode:  monitor (0) or user (1).

• When an interrupt or fault occurs hardware switches to monitor
mode.

• Privileged instructions can be issued only in monitor mode.

monitor user

Interrupt/fault

set user mode
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I/O Protection

• All I/O instructions are privileged instructions.

• Must ensure that a user program could never gain control of the
computer in monitor mode (I.e., a user program that, as part of its
execution, stores a new address in the interrupt vector).
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Memory Protection

• Must provide memory protection at least for the interrupt vector
and the interrupt service routines.

• In order to have memory protection, add two registers that
determine the range of legal addresses a program may access:

– base register – holds the smallest legal physical memory
address.

– Limit register – contains the size of the range

• Memory outside the defined range is protected.
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A Base And A limit Register Define A Logical Address Space
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Protection Hardware

• When executing in monitor mode, the operating system has
unrestricted access to both monitor and user’s memory.

• The load instructions for the base and limit registers are
privileged instructions.

CPU

trap to operating system

monitor—addressing error memory

base + limitbase

address yes yes

nono

≥ <
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CPU Protection

• Timer – interrupts computer after specified period to ensure
operating system maintains control.

– Timer is decremented every clock tick.

– When timer reaches the value 0, an interrupt occurs.

• Timer commonly used to implement time sharing.

• Time also used to compute the current time.

• Load-timer is a privileged instruction.
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General-System Architecture

• Given the I/O instructions are privileged, how does the user
program perform I/O?

• System call – the method used by a process to request action by
the operating system.

– Usually takes the form of a trap to a specific location in the
interrupt vector.

– Control passes through the interrupt vector to a service
routine in the OS, and the mode bit is set to monitor mode.

– The monitor verifies that the parameters are correct and
legal, executes the request, and returns control to the
instruction following the system call.
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Use of A System Call to Perform I/O
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