
Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.1

Module 2: Computer-System Structures

• Computer System Operation

• I/O Structure

• Storage Structure

• Storage Hierarchy

• Hardware Protection

• General System Architecture

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.2

Computer-System Architecture

tape drivesprinterdiskdisk

CPU
disk

controller

printer

controller

tape-drive

controller

memory

memory controller

system bus

on-line

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.3

Computer-System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular device type.

• Each device controller has a local buffer.

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller.

• Device controller informs CPU that it has finished its operation by
causing an interrupt.

!"#$%&'()*(+,-./,&."-

!"#$%"
!"#$%"

#&'()"*+,''(-&+.*/"0

10$/2+"/$%34&5$%,6(7'$/

81479
-&'/0&6(7'$/

:0$+,0;(<"+&0;

8=>"%*/,?6"(<"+&0;9
!"#$%"

1@@0"AA

!,/,

!"#$%&'

()

(*

(+

!"!"!

,-.-/0$(#120-#30

4/+5-26+.7$'+2-

-$9:#3.+;

(21"-$9:#3.+;

(#0/7-

!6<836=$>32=.3?$@#=63?

!"#$%&'()*+

!,-

!.-

/$##0)1

!"#$

%&'()

*+,-.

/
!

"

01!

!"#$ %&'()

!"#$"%&'()*+,-,+%.,#/

!"#$%&$'&$(&$)*

+$+$+

%$,$'$-$(*

)$,$%$.$/00* *$12)3$425$%$,$'$-$(

$$$$62%)$$$$$$78&'

$$$$62%)$$$$$$79&(

$$$$%))$$$$$$$78&79

$$$$:#253$$$$$78&%

*$12)3$425$)$,$%$.$/00

$$$$62%)$$$$$$79&,/00

$$$$:;'#5%(#$$78&79

$$$$:#253$$$$$78&)

(#0"+*

122*&345'6%/$0%$*

!"#$%&'()"&*+"*'

!"#$%&"'$(")"*"+","-

"""".$)%""""""/01+

"""".$)%""""""/21-

"""")%%"""""""/01/2

""""34$(&"""""/01)

!"#$%&"'$("%"*")"5"677

"""".$)%""""""/21*677

""""38+4()-4""/01/2

""""34$(&"""""/01%

,--'./01()"&*+"*'

6766677677667796

6766677676777797

6767766677667797

6766676777667796

6766677676777797

6767766777667797

6766677667667796

!"#$%&'()"&*+"*'

!"#$%"&'(#)$

*+$,-'(#)$

.+,"/+'(#)$

01+,2$+'(#)$

3454

&"6/''789,

:!

;7

!"#$%%%&'()

!"#$%%%&*(+

#$$%%%%&'(&*

,-"./%%&'(#

348<

3454

3458

345=

!"#$%"&'(#)$:%)>6%?'@+>"%?

0100011011001120

0100011010111121

0101100011001121

0100010111001120

!"#$%"&'(#)$'*+,%-$)"#

!"#$#%&'()*+,#-.'/.#'00/,--12

34#$#&,&5/67!"82

)'9.:9';#$#"<=>42

?)*9,@)'9.:9';#+5.#A=BC#D

####,E,(F.,@34C2

####!"#$#!"#G#-*H,5I@3JAB4K"BC2

####34#$#&,&5/67!"82

L2

. !"#$%&'%()"/'0#1$%23$)"#'%,$%),4,5'6%"7

7,7"%8

. *+"$,#"&'%()"/'9:('"+;'7,7"%8'5-$-

%,6,%,#3,;'0<*;',$3=

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.4

Common Functions of Interrupts

• Interrupts transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

• Interrupt architecture must save the address of the interrupted
instruction.

• Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either by an error
or a user request.

• An operating system is interrupt driven.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.5

Interrupt Handling

• The operating system preserves the state of the CPU by storing
registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what action should be
taken for each type of interrupt

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.6

Interrupt Time Line For a Single Process Doing Output

I/O

request

CPU user

process

executing

I/O

device

idle

transferring

I/O interrupt

processing

transfer

done

I/O

request

transfer

done

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.7

I/O Structure

• After I/O starts, control returns to user program only upon I/O
completion.

– wait instruction idles the CPU until the next interrupt

– wait loop (contention for memory access).

– At most one I/O request is outstanding at a time, no
simultaneous I/O processing.

• After I/O starts, control returns to user program without waiting
for I/O completion.

– System call – request to the operating system to allow user
to wait for I/O completion.

– Device-status table contains entry for each I/O device
indicating its type, address, and state.

– Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.8

Two I/O methods

requesting process

(a)

time

user

kernel

device driver

interrupt handler

hardware

data transfer

requesting process

waiting

(b)

time

user

kernel

device driver

interrupt handler

hardware

data transfer

Synchronous Asynchronous

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.9

Device-Status Table

device: card reader 1

status: idle

device: line printer 3

status: busy

device: disk unit 1

status: idle

device: disk unit 2

status: idle

device: disk unit 3

status: busy

.

.

.

request for

line printer

address: 38546

length: 1372

request for

disk unit 3

file: xxx

operation: read

address: 43046

length: 20000

request for

disk unit 3

file: yyy

operation: write

address: 03458

length: 500

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.10

Direct Memory Access (DMA) Structure

• Used for high-speed I/O devices able to transmit information at
close to memory speeds.

• Device controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention.

• Only one interrupt is generated per block, rather than the one
interrupt per byte.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.11

Storage Structure

• Main memory – only large storage media that the CPU can
access directly.

• Secondary storage – extension of main memory that provides
large nonvolatile storage capacity.

• Magnetic disks – rigid metal or glass platters covered with
magnetic recording material

– Disk surface is logically divided into tracks, which are
subdivided into sectors.

– The disk controller determines the logical interaction
between the device and the computer.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.12

Moving-Head Disk Mechanism

spindletrack t

sector s

cylinder c

platter

rotation

arm

read-write

head

actuator

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.13

Storage Hierarchy

• Storage systems organized in hierarchy.

– Speed

– cost

– volatility

• Caching – copying information into faster storage system; main
memory can be viewed as a last cache for secondary storage.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.14

Storage-Device Hierarchy

magnetic tapes

optical disk

magnetic disk

electronic disk

cache

main memory

registers

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.15

Hardware Protection

• Dual-Mode Operation

• I/O Protection

• Memory Protection

• CPU Protection

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.16

Dual-Mode Operation

• Sharing system resources requires operating system to ensure
that an incorrect program cannot cause other programs to
execute incorrectly.

• Provide hardware support to differentiate between at least two
modes of operations.

1. User mode – execution done on behalf of a user.

2. Monitor mode (also supervisor mode or system mode) –
execution done on behalf of operating system.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.17

Dual-Mode Operation (Cont.)

• Mode bit added to computer hardware to indicate the current
mode: monitor (0) or user (1).

• When an interrupt or fault occurs hardware switches to monitor
mode.

• Privileged instructions can be issued only in monitor mode.

monitor user

Interrupt/fault

set user mode

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.18

I/O Protection

• All I/O instructions are privileged instructions.

• Must ensure that a user program could never gain control of the
computer in monitor mode (I.e., a user program that, as part of its
execution, stores a new address in the interrupt vector).

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.19

Memory Protection

• Must provide memory protection at least for the interrupt vector
and the interrupt service routines.

• In order to have memory protection, add two registers that
determine the range of legal addresses a program may access:

– base register – holds the smallest legal physical memory
address.

– Limit register – contains the size of the range

• Memory outside the defined range is protected.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.20

A Base And A limit Register Define A Logical Address Space

monitor

job 1

job 2

job 3

job 4

1024000

0

880000

420940

300040

256000

300040

base register

120900

limit register

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.21

Protection Hardware

• When executing in monitor mode, the operating system has
unrestricted access to both monitor and user’s memory.

• The load instructions for the base and limit registers are
privileged instructions.

CPU

trap to operating system

monitor—addressing error memory

base + limitbase

address yes yes

nono

≥ <

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.22

CPU Protection

• Timer – interrupts computer after specified period to ensure
operating system maintains control.

– Timer is decremented every clock tick.

– When timer reaches the value 0, an interrupt occurs.

• Timer commonly used to implement time sharing.

• Time also used to compute the current time.

• Load-timer is a privileged instruction.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.23

General-System Architecture

• Given the I/O instructions are privileged, how does the user
program perform I/O?

• System call – the method used by a process to request action by
the operating system.

– Usually takes the form of a trap to a specific location in the
interrupt vector.

– Control passes through the interrupt vector to a service
routine in the OS, and the mode bit is set to monitor mode.

– The monitor verifies that the parameters are correct and
legal, executes the request, and returns control to the
instruction following the system call.

Applied Operating System Concepts Silberschatz, Galvin, and Gagne 19992.24

Use of A System Call to Perform I/O

trap to

monitor

.

.

.

case n

read

.

.

.

.

.

.

system call n

.

.

.

1

perform I/O

2

return

to user

3

user

program

resident

monitor

