
Using version control to 
collaborate in projects



Outline
● Artifacts’ lifecycle
● Managing revisions
● Client/server vs distributed revision systems
● Managing conflicts
● Branching
● Workflows



TODO
● Tags
● Head
● Merge command line example
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Managing revisions
● Implement a commit operation that makes 

snapshots of files
○ Easy to do, e.g.: move snapshots to version-stamped 

directories or create copies in place appending a version 
counter at the end of the filename or create a document 
database or … Let’s call this thing a repository.

● Implement a restore operation that retrieves 
previous snapshots

● We’re done, right?



Additional issues
● Metadata

○ When was the snapshot taken?
○ Who edited the file?
○ Why they did it?

● Changesets
○ Are other files involved in the same conceptual 

change?
● Collaboration

○ How to deal with changes from different developers?



The changeset
When creating revisions we often want to operate 
not on single files but on a group of correlated 
files that have all been modified as part of the 
same conceptual change. This group of files is 
usually referred to as a changeset.



The stream of changesets
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The stream of snapshots
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Collaboration
Make the revision system a distributed system.
● Client/server (centralized) approach - the revision 

system runs as a service in a remote host and 
exposes an API.

● P2P (distributed) approach - all workstations have 
local repositories that can be synchronized with 
remote repositories.
○ Most usually: one remote repository and multiple local 

repositories that synchronize with the remote one



Centralized vs distributed
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What could ever go wrong?



What could ever go wrong?
Conflicts: multiple users modify the same file(s) 
concurrently.
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Facing conflicts
● Centralized approach: avoid them

○ Use locking: only the user owning the lock for a file 
can create revisions for that file.

● Distributed approach: manage them
○ Define workflows to minimize the impact of 

conflicts; when concurrent changes happen, select 
a change over another or merge changes.



Issues with the client/server approach
● Everybody sees everybody’s revisions also if 

that’s partial work.
● If somebody forgets to release a lock, it’s a 

problem.
● Bad habits with lock management impact all 

developers.
● If the server is down everybody is stuck.



git
Git (noun): an unpleasant or contemptible person.

[Oxford Languages] 

Originally developed by Linus Torvalds in 2005 to 
support the collaborative development of the 
Linux kernel. Main design goals: efficiency (esp. 
w.r.t. branching), robustness.



git
git is a distributed versioning systems, initially 
devised as a kernel on top of which user-friendly 
versioning systems could be built.

The user friendly systems, however, never 
appeared.
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Branching
A branch is a history line diverging from the main 
one. Branches have to be created explicitly and 
have names.
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Branches
● Branches form hierarchies:

○ Child branch.
○ Parent (or upstream).
○ Trunk (parent less branch).

● Divergent branches can later be merged (i.e. 
integrated with an ancestor).

● A branched not intended to later be merged is 
usually called a fork.



Reconcile diverging histories
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Merge
Merging creates a new commit with two parents 
that integrates the changes from both branches.
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Types of merging
● Merging with non overlapping changesets.

○ Create a new history by applying (from a common 
ancestor) first the changes in other, then the changes 
in this.

● Merging with overlapping changesets
○ The same files have been modified in both histories.

■ For text files: if the edits are not overlapping, apply them all.
■ In all other cases: no automatic fix, let the user decide how to 

resolve conflicts (potentially creating a new revision).



Rebase

c94f6c35 cfb4 15db

e95f 408b

c94f6c35 cfb4 15db

46ed 1ee8cfb4 15db

13d2



git centralized workflow
● No branches.
● When conflict takes place (during push 

operations) align local history with remote’s 
(e.g. rebasing with pull --rebase) and push 
again.
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Centralized WF: conflict resolution
> git pull --rebase   

> git log 

<list of conflicting files>  

“Fix” the conflicting files
> git add <fixed files>    

> git rebase --continue  

> git push  



git branching workflows
Several branching workflows have been 
proposed, mostly as variations of feature 
branching.
In feature branching developers working on new 
features create a branch, commit to this branch 
until their work is done, then the branch is 
merged (and removed).



Pull requests
A pull request (or merge request) is a practice, it 
is not a technical feature of the VSC.

When adopting pull requests, the merging of a 
feature branch is not performed by the developer 
working on the branch but by a repository 
maintainer (possibly after a review process).



Gitflow
● Two main (historical) branches: Master and 

Develop.
● Feature branches derive from Develop (and are 

merged with it).
● When getting close to a release a Release branch 

is derived from Develop; no new features are 
committed to a Release branch; when ready to 
ship Release is merged with Master.
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Gitflow: hotfixes
Hotfix branches are the only branches derived 
from Master; they are used for bug-fixing only 
and soon merged back.



Gitflow: hotfixes
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