
Using version control to
collaborate in projects

Outline
● Artifacts’ lifecycle
● Managing revisions
● Client/server vs distributed revision systems
● Managing conflicts
● Branching
● Workflows

TODO
● Tags
● Head
● Merge command line example

Artifacts’ lifecycle

Edit Edit Edit Edit Edit

Create

Artifacts’ lifecycle

Edit Edit Edit Edit Edit

Create

Persist Persist Persist

Artifacts’ lifecycle

Edit Edit Edit Edit Edit

Create

Persist Persist Persist

Files’ lifecycle

Create

Edit and
 persist

Edit and
persist

Files’ lifecycle

Create

Edit and
 persist

Edit and
persist

Files’ lifecycle

Save Save Save Save Save

V1 V2 V3

Commit Commit Commit

Files’ lifecycle

Save Save Save Save Save

V1 V2 V3

Commit Commit Commit

Managing revisions
● Implement a commit operation that makes

snapshots of files
○ Easy to do, e.g.: move snapshots to version-stamped

directories or create copies in place appending a version
counter at the end of the filename or create a document
database or … Let’s call this thing a repository.

● Implement a restore operation that retrieves
previous snapshots

● We’re done, right?

Additional issues
● Metadata

○ When was the snapshot taken?
○ Who edited the file?
○ Why they did it?

● Changesets
○ Are other files involved in the same conceptual

change?
● Collaboration

○ How to deal with changes from different developers?

The changeset
When creating revisions we often want to operate
not on single files but on a group of correlated
files that have all been modified as part of the
same conceptual change. This group of files is
usually referred to as a changeset.

The stream of changesets

2aae 6c35 c94f cfb4

file1

file2

file1

file3

file1

file3

file2

The stream of snapshots

2aae 6c35 c94f cfb4

file1

file2

file1

file2

file3

file1

file2

file3

file1

file2

file3

Collaboration
Make the revision system a distributed system.
● Client/server (centralized) approach - the revision

system runs as a service in a remote host and
exposes an API.

● P2P (distributed) approach - all workstations have
local repositories that can be synchronized with
remote repositories.
○ Most usually: one remote repository and multiple local

repositories that synchronize with the remote one

Centralized vs distributed

Workstation

Workstation

Workstation

Repository

Revision
system server

Workstation

Repository

Workstation

Workstation

Repository

Repository

Revision
system server

Repository

Centralized revision system

Working
directory

Repository
(on server)

checkout

commit

restore

Distributed revision system
Working
directory

Local
repository

checkout

push

pull

restore

Remote
repository

commit

restore

What could ever go wrong?

What could ever go wrong?
Conflicts: multiple users modify the same file(s)
concurrently.

server

Conflicting histories in distributed VCSs

2aae 6c35 c94f

server

Conflicting histories in distributed VCSs

2aae 6c35 c94f

WS12aae 6c35 c94f

checkout

server

Conflicting histories in distributed VCSs

2aae 6c35 c94f

WS12aae 6c35 c94f cfb4 15db

server

Conflicting histories in distributed VCSs

2aae 6c35 c94f

WS1

cfb4 15db

push

2aae 6c35 c94f cfb4 15db

WS2

server

Conflicting histories in distributed VCSs

2aae 6c35

WS12aae

c94f

6c35 c94f

checkout

2aae 6c35 c94f

checkout

server

Conflicting histories in distributed VCSs

WS2

WS12aae 6c35

2aae 6c35 c94f e95f 408b 9ce9

c94f cfb4 15db

2aae 6c35 c94f

server

Conflicting histories in distributed VCSs

2aae c94f6c35

push

cfb4 15db

WS12aae 6c35 c94f cfb4 15db

WS22aae 6c35 c94f e95f 408b 9ce9

server

Conflicting histories in distributed VCSs

push

WS22aae 6c35 c94f e95f 408b 9ce9

WS12aae 6c35 c94f cfb4 15db

2aae c94f6c35 cfb4 15db

Facing conflicts
● Centralized approach: avoid them

○ Use locking: only the user owning the lock for a file
can create revisions for that file.

● Distributed approach: manage them
○ Define workflows to minimize the impact of

conflicts; when concurrent changes happen, select
a change over another or merge changes.

Issues with the client/server approach
● Everybody sees everybody’s revisions also if

that’s partial work.
● If somebody forgets to release a lock, it’s a

problem.
● Bad habits with lock management impact all

developers.
● If the server is down everybody is stuck.

git
Git (noun): an unpleasant or contemptible person.

[Oxford Languages]

Originally developed by Linus Torvalds in 2005 to
support the collaborative development of the
Linux kernel. Main design goals: efficiency (esp.
w.r.t. branching), robustness.

git
git is a distributed versioning systems, initially
devised as a kernel on top of which user-friendly
versioning systems could be built.

The user friendly systems, however, never
appeared.

git: the areas

Working
directory

Staging
area

restore

Repository

checkout

add

commit

restore

git: the states

Untracked

Tracked

Committed Modifiedadd
edit

addcommit

create

Staged

Distributed git
Working
directory

Staging
area

Local
repository

checkout

push

fetch

commit

restore

Remote
repository

add

restore

merge

Branching
A branch is a history line diverging from the main
one. Branches have to be created explicitly and
have names.

2aae c94f6c35 cfb4 15db

e95f 408b 9ce9

main

feature

Branches
● Branches form hierarchies:

○ Child branch.
○ Parent (or upstream).
○ Trunk (parent less branch).

● Divergent branches can later be merged (i.e.
integrated with an ancestor).

● A branched not intended to later be merged is
usually called a fork.

Reconcile diverging histories

c94f6c35 cfb4 15db

e95f 408b

Integrate changes from diverging history lines
into a single timeline.

Two main approaches: merge and rebase.
this

other

Merge
Merging creates a new commit with two parents
that integrates the changes from both branches.

c94f6c35 cfb4 15db

e95f 408b

1e4b
merge
commit

Types of merging
● Merging with non overlapping changesets.

○ Create a new history by applying (from a common
ancestor) first the changes in other, then the changes
in this.

● Merging with overlapping changesets
○ The same files have been modified in both histories.

■ For text files: if the edits are not overlapping, apply them all.
■ In all other cases: no automatic fix, let the user decide how to

resolve conflicts (potentially creating a new revision).

Rebase

c94f6c35 cfb4 15db

e95f 408b

c94f6c35 cfb4 15db

46ed 1ee8cfb4 15db

13d2

git centralized workflow
● No branches.
● When conflict takes place (during push

operations) align local history with remote’s
(e.g. rebasing with pull --rebase) and push
again.

server

git centralized workflow

WS2

WS12aae 6c35

2aae 6c35 c94f e95f 408b 9ce9

c94f cfb4 15db

2aae 6c35 c94f

server

git centralized workflow

2aae c94f6c35

push

cfb4 15db

WS12aae 6c35 c94f cfb4 15db

WS22aae 6c35 c94f e95f 408b 9ce9

server

git centralized workflow

push

WS22aae 6c35 c94f e95f 408b 9ce9

WS12aae 6c35 c94f cfb4 15db

2aae c94f6c35 cfb4 15db

server

git centralized workflow

WS22aae 6c35 c94f e95f 408b 9ce9

WS12aae 6c35 c94f cfb4 15db

pull --rebase

2aae c94f6c35 cfb4 15db

Centralized WF: conflict resolution
> git pull --rebase

> git log

<list of conflicting files>

“Fix” the conflicting files
> git add <fixed files>

> git rebase --continue

> git push

git branching workflows
Several branching workflows have been
proposed, mostly as variations of feature
branching.
In feature branching developers working on new
features create a branch, commit to this branch
until their work is done, then the branch is
merged (and removed).

Pull requests
A pull request (or merge request) is a practice, it
is not a technical feature of the VSC.

When adopting pull requests, the merging of a
feature branch is not performed by the developer
working on the branch but by a repository
maintainer (possibly after a review process).

Gitflow
● Two main (historical) branches: Master and

Develop.
● Feature branches derive from Develop (and are

merged with it).
● When getting close to a release a Release branch

is derived from Develop; no new features are
committed to a Release branch; when ready to
ship Release is merged with Master.

Gitflow

Main Develop Feature Release

Gitflow: hotfixes
Hotfix branches are the only branches derived
from Master; they are used for bug-fixing only
and soon merged back.

Gitflow: hotfixes

Main Develop Feature Release Hotfix

