

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Modern patterns

Null Object
● The problem

● null a value on a non-value?
● When we pass or return null where a reference

in required/expected we mean “default value”
or “no object”?

● If null can be passed/returned we have to
check for that to avoid errors/exceptions

● Tony Hoare introduced null references in
ALGOL W back in 1965. It later called it “The
Billion Dollar Mistake”.

Null Object

● Use a “do nothing” object instead of null
● No check-for-null; no null pointer

exception
● No standard solution

Null Object in Java
public interface Cat {
public static final Cat NONE =
new Cat() {
//”do-noting” methods
Cat getParent() {
return NONE;

}
};

}
…
Cat grandParent =
 cat.getParent().getParent();

The Hollywood principle

● “Don't call us, we'll call you”
● Who controls who?
● Library or framework?
● IoC: inversion of control

Dependency Injection

● A design pattern which is an application of IoC
● Dependency injection creates a graph of

dependencies by inverting the control to find
associated objects, pushing dependencies from the
core to the edges - up to a composition root

● Break the dependency from new/factories (“the
new new”)

● Greatly simplifies testing, improves modularity.

Types of injection
● Constructor injection

● Dependencies are provided via constructor parameters
● Setter injection (also: field injection)

● Dependencies are provided by calling specific setters
● Interface injection

● Injection methods are declared in interfaces, a class
implements an injection interface for each dependency to
inject

● Method injection

● Used when a dependency can be variously solved on a
per-operation basis (perform this operation using this
service)

Component based architectures

● In component-based software engineering
(CBSE), software systems are built by gluing
together software components on the basis of
provided and required interfaces

DI and CBSE

● By exposing the dependencies to be injected in its
interface an object exposes both what it provides
and what it requires, easing a component based
approach to software design.

“Clean” DI

● Use constructor injection for dependencies
always needed that do not change for the lifetime
of the instance

● Use method injection for dependencies that are
needed only during the invocation of that method

“Clean” DI

● When binding has to be solved at run-time pass
factories to constructors or methods.
● Try to isolate choice points in strategy-like structures
● If the language allows, let the dependency emerge

from the signature of the factory.
For example, in Java, make factories implement a
Factory<Dependency> interface.

DI in Java

● Pure DI, no framework, the composition root is
close to the entry point(s) of the application

● DI frameworks: Guice, Dagger, Spring, CDI, …
● Annotations are used to mark dependencies that

have to be injected

public void postButtonClicked() {
 String text = textField.getText();
 if (text.length() > 140) {
 Shortener shortener = new TinyUrlShortener();
 text = shortener.shorten(text);
 }
 if (text.length() <= 140) {
 Tweeter tweeter = new SmsTweeter();
 tweeter.send(text);
 textField.clear();
 }
}

Example

From Google I/O 09

public class TweetClient {
 private final Shortener shortener;
 private final Tweeter tweeter;
 public TweetClient(Shortener shortener,
 Tweeter tweeter) {
 this.shortener = shortener;
 this.tweeter = tweeter;
 }
 public void postButtonClicked() {
 ...
 if (text.length() <= 140) {
 tweeter.send(text);
 textField.clear();
 }

Example

import com.google.inject.Inject;

public class TweetClient {
 private final Shortener shortener;
 private final Tweeter tweeter;

 @Inject
 public TweetClient(Shortener shortener,
 Tweeter tweeter) {
 this.shortener = shortener;
 this.tweeter = tweeter;
 }

Example with Guice

import com.google.inject.AbstractModule;

public class TweetModule extends AbstractModule {
 protected void configure() {
 bind(Tweeter.class).to(SmsTweeter.class);
 bind(Shortener.class).to(TinyUrlShortener.class);
 }
}

Example with Guice

public static void main(String[] args) {
 Injector injector
 = Guice.createInjector(new TweetModule());
 TweetClient tweetClient
 = injector.getInstance(TweetClient.class);
 tweetClient.show();
}

Example with Guice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

