Ingegneria del Software
Corso di Laurea in Informatica per il Management

Design Patterns
part 4

Davide Rossi
Dipartimento di Informatica
Universita di Bologna

GoF: Mediator

* Define an object that encapsulates how a set of

objects interact.

* Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and

* it lets you vary their interaction independently.

Mediator

?

ConcreteMediator

Colleague

T

ConcreteColleague1

ConcreteColleague?2

A

GoF: Composite

* Compose objects into tree structures to represent
part-whole hierarchies

* Composite lets clients treat individual objects and
compositions of objects uniformly

Component |,

Client f--------------—- =

Cperation()
Fil}

 J

Composite

Leaf

Cperation()

Cperation()

Add()

Femuaove()

GetChild(id) : Component

GoF: Memento

* Without violating encapsulation, capture and
externalize an object's internal state so that the
object can be restored to this state later.

* A caretaker asks originator for mementos that can
be stored and used to restore originator’s state.

GokF: Iterator

* Provide a way to access the elements of an

aggregate object sequentially without exposing its
underlying representation.

AbstractCollection =<interface>>
Cliient L [terator
createlterator() Tl B
iy first()
next()
isDonel)
currentitemi()
Concretelterator
ConcreteCollection
createlterator() first()
nexti)
isDone()
currentitemi()

GoF: Visitor

* Represent an operation to be performed on the
elements of an object structure.

* Visitor lets you define a new operation without
changing the classes of the elements on which it
operates.

e Based on inversion of control

Visitor

\Visitor
Cliemt ~ F-------—m =
visital)
i visitB()
= v
i | |
| ConcreteVisitor1 ConcreteVisitor2
i VISItA() visitAl)
| visitB() visitB()
f
Element
ObjectStructure
accept(Visitorv)
ElementA ElementB
accept{Visitor v) accept{Visitor v) -~ -----”-VisitE'Ethis}j
opA[L) opB()

Visitor in the Java API

class java.nio.file.Files {
public static Path walkFileTree
(Path start, FileVisitor<? super Path> visitor)

}...

interface java.nio.file.FileVisitor {
visitFile(T file, BasicFileAttributes attrs)

}...

GoF: Builder

* Separate the construction of a complex object from
its representation so that the same construction
process can create different representations.

Director Builder
construct() buildPartal)
buildPartB()

T

ConcreteBuilder

—— R = Product
buildPartAl)

buildPartBi()
getResult()

Minor but frequent issue solved by
Builder: ugly constructors

* Foo foo = new Foo(a, b, null, null, ¢, null, d)

Builder in Java

* Foo foo =
Foo.Builder.createBuilder().
setWidth(a).setHeight(b).
setDepth(c).setColor(d).build()

GoF: Command

* Encapsulate a request as an object, thereby letting
you parametrize clients with different requests,
queue or log requests, and support undoable
operations.

GoF: Abstract Factory

* Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes.

GoF: Prototype

* Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

* Create new instances by cloning existing ones.

GoF: Flyweight

* Use sharing to support large numbers of fine-grained
objects efficiently:.

GoF: Chain of Responsibility

* Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle
the request.

* Chain the receiving objects and pass the request
along the chain until an object handles it.

GoF: Interpreter

* Given a language, define a representation for its
grammar along with an interpreter that uses the
representation to interpret sentences in the language.

Resources

Books

* Eric Freeman & Elisabeth Robson, Head First Design
Patterns: Building Extensible and Maintainable Object-
Oriented Software (2nd Edition), O'Reilly

Online:
* http://www.vincehuston.org/dp/

* http://www.oodesign.com/

* https://refactoring.guru/design-patterns/

* http://www.informit.com/articles/article.aspx?p=1404056

http://www.vincehuston.org/dp/
http://www.oodesign.com/
https://refactoring.guru/design-patterns/
http://www.informit.com/articles/article.aspx?p=1404056

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

