

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Design Patterns
part 4

GoF: Mediator

● Define an object that encapsulates how a set of
objects interact.

● Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and

● it lets you vary their interaction independently.

Mediator Colleague

ConcreteColleague1 ConcreteColleague2ConcreteMediator

GoF: Composite

● Compose objects into tree structures to represent
part-whole hierarchies

● Composite lets clients treat individual objects and
compositions of objects uniformly

GoF: Memento

● Without violating encapsulation, capture and
externalize an object's internal state so that the
object can be restored to this state later.

● A caretaker asks originator for mementos that can
be stored and used to restore originator’s state.

GoF: Iterator

● Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.

GoF: Visitor
● Represent an operation to be performed on the

elements of an object structure.
● Visitor lets you define a new operation without

changing the classes of the elements on which it
operates.

● Based on inversion of control

Visitor

Visitor in the Java API

class java.nio.file.Files {
 public static Path walkFileTree
 (Path start, FileVisitor<? super Path> visitor)
 …
}
interface java.nio.file.FileVisitor {
 visitFile(T file, BasicFileAttributes attrs)
 …
}

GoF: Builder

● Separate the construction of a complex object from
its representation so that the same construction
process can create different representations.

Minor but frequent issue solved by
Builder: ugly constructors

● Foo foo = new Foo(a, b, null, null, c, null, d)

Builder in Java

● Foo foo =
 Foo.Builder.createBuilder().
 setWidth(a).setHeight(b).
 setDepth(c).setColor(d).build()

GoF: Command

● Encapsulate a request as an object, thereby letting
you parametrize clients with different requests,
queue or log requests, and support undoable
operations.

GoF: Abstract Factory

● Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes.

GoF: Prototype

● Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

● Create new instances by cloning existing ones.

GoF: Flyweight

● Use sharing to support large numbers of fine-grained
objects efficiently.

GoF: Chain of Responsibility

● Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle
the request.

● Chain the receiving objects and pass the request
along the chain until an object handles it.

GoF: Interpreter

● Given a language, define a representation for its
grammar along with an interpreter that uses the
representation to interpret sentences in the language.

Resources

Books
● Eric Freeman & Elisabeth Robson, Head First Design

Patterns: Building Extensible and Maintainable Object-
Oriented Software (2nd Edition), O'Reilly

Online:
● http://www.vincehuston.org/dp/
● http://www.oodesign.com/
● https://refactoring.guru/design-patterns/
● http://www.informit.com/articles/article.aspx?p=1404056

http://www.vincehuston.org/dp/
http://www.oodesign.com/
https://refactoring.guru/design-patterns/
http://www.informit.com/articles/article.aspx?p=1404056

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

