

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Design Patterns
part 3

GoF: Singleton
● Problem: how go guarantee only one instance for a

given class is ever created (and all clients see that
same instance)?

● Singleton: ensure a class only has one instance, and
provide a global point of access to it.

Singleton

● Beware of singletons (code smell)!
● How do you provide global variables in

languages without global variables? Don’t. [K.
Beck]

● Ensure that only one instance of a class is created
● Provide a global point of access to the object

Singleton candidates

● Factories
● Loggers
● Configuration classes
● Resource access
● Classes that have no non-static attributes nor any

associations that are navigable away from their
instances

Singleton unlikely candidates

● Classes for which a single instance is part of the
specification but is not intrinsic to the problem
domain

● Objects that should be globally accessible

GoF: Proxy

● Problem: how to intercept the access to on object to
address orthogonal concerns?

● Proxy: provide a surrogate or placeholder for
another object to control access to it.

● The proxy can add behavior without adding
responsibilities (the basic task of a proxy is
delegating to a real subject)

GoF: Proxy

Examples of proxy uses

● Access control
● Access counter
● Access logger
● Access to remote objects (possibly with caching)
● Smart references (reference counter, load a

persistent subject on demand, lock checking, ...)

Too many dimensions
Pizza

-description

toString()
cost()

Margherita

cost()

Alici

cost()

Marinara

cost()

Too many dimensions
Pizza

-description

toString()
cost()

Margherita

cost()

Alici

cost()

Marinara

cost()

AliciBufala

cost()

AliciWholeGrain

cost()

AliciBufala
WholeGrain

cost()

MarinaraWholeGrain

cost()

MarinaraBufala

cost()

MarinaraBufala
WholeGrain

cost()

Too many dimensions
Pizza

-description
-bufala
-wholeGrain
-noMilk

cost()

Margherita

cost()

Alici

cost()

Marinara

cost()

This calculates the cost
of supplements

This calculates the cost
of pizza plus the supplements

by calling super.cost()

Too many dimensions

● What about new options?
● What about a price change for an option?
● What about “double bufala”?

GoF: Decorator
● Attach additional responsibilities to an object

dynamically.
● Decorators provide a flexible alternative to sub-

classing for extending functionality (think of this as
a wrapper).

<<interface>>
Component

ConcreteComponent Decorator

Decorated pizza
<<interface>>

Pizza

Margherita

Bufala

WholeGrain

NoMilk

:WholeGrain :Bufala :Margherita

Decorator in the Java API

java.io.Reader
Reader reader =
 new LineNumberReader(
 new FileReader(“myfile”));

reader
:LineNumberReader

:FileReader

<<interface>>
Reader

GoF: Adapter
● Problem: how to access a class whose methods does

not align with client’s expectations (coding styles,
parameter types, ...)

● Adapter: convert the interface of a class into another
interface clients expect.

● Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

GoF: Bridge

● Problem: how to break the tyranny of the client’s
abstractions?

● Bridge: decouple an abstraction from its
implementation so that the two can vary
independently.

● The Bridge pattern puts abstractions and their
implementations in separate class hierarchies.
Delegation is used to bind the two.

Bridge

Adapter makes things work after they're designed;
Bridge makes them work before they are. [GoF]

Bridge
Button

RadioButtonCheckButton SwitchButton

Bridge
Button

RadioButtonCheckButton SwitchButton

CheckButtonWin CheckButtonMac

Bridge
Button

RadioButtonCheckButton SwitchButton

RadioButtonCheckButton

SwitchButton

Button UIWidget

WinUIWidget MacUIWidget

Resources

Books
● Eric Freeman & Elisabeth Robson, Head First Design

Patterns: Building Extensible and Maintainable Object-
Oriented Software (2nd Edition), O'Reilly

Online:
● http://www.vincehuston.org/dp/
● http://www.oodesign.com/
● https://refactoring.guru/design-patterns/
● http://www.informit.com/articles/article.aspx?p=1404056

http://www.vincehuston.org/dp/
http://www.oodesign.com/
https://refactoring.guru/design-patterns/
http://www.informit.com/articles/article.aspx?p=1404056

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

