Ingegneria del Software
Corso di Laurea in Informatica per il Management

Software testing

Davide Rossi
Dipartimento di Informatica
Universita di Bologna

Validation and verification

* Software testing is part of verification and
validation activities

* Verification: evaluation of artifacts (meeting,
reviews), software testing

* Are we building the system right?

* Validation: software meets the expectations,
acceptance testing

* Are we building the right system?

What is software testing about?

* Ifyoudon’t care about quality, you can meet any
other requirement. [G. M. Weinberg]

* Testing shows the presence, NOT the absence of
bugs. |E. W. Dijkstra]

* Software testing is about revealing as many
defect as it is reasonable

Testing and software

* Testing in software cannot, in general, make use
of results gathered from other engineering
disciplines.

* A bridge tested for 1000 tons will surely handle

anything inferior, programs do not benefit from this
kind of continuity properties.

* The number of states in software systems is one
order of magnitude larger than the number of
states in the nonrepetitive parts of computers. |D.
Parnas]

Testing and costs

* The cost for correcting defects in software system
is proportional to the time the defect is laying in
the system (there are graphs and figures in the
literature, albeit most are just wrong).

* As a consequence we want to test early and
often

Jargon

Defect (bug)
* The result of a mistake
Failure
* Happens when the mistake is exposed
Issue
* Describes the failure
Test case

* Describes the expected outcome of a run, it includes data,
(pre/post)conditions and (expected) results

Test set

* A collection of test cases

Testing levels

 Unit * (Class/method

* Integration * Group of software
modules

* End-to-end (E2E) * The whole system

Ed

System/integration

Unit

Testing pyramid

Static/dynamic testing

* Static testing
* The code is analyzed in order to find bugs
* Dynamic testing

* The code is executed in order to find bugs

Static testing

* Mostly based on formal methods approach

* model checking
* data-flow analysis
* abstract interpretation

* symbolic execution

* Noteworthy tool: Polyspace (marks code on the basis of
static analysis: reliable code, faulty code, unreachable
code, unproven code, code violating rules)

* Human reviews are a kind of static testing too.

Software quality tools

* Use bug patterns to assess the quality of code

* Mostly simple rules to check adherence to safe
coding styles

* Some static analysis rule (e.g. non-reachable
code, collection added to itself, ...)

* Examples: FindBugs/SpotBugs, SonarQube, ...

Black-box testing

* In black-box testing functionality is examined
without any knowledge of internal
implementation (what, not how)

* Test design techniques:

* Boundary value analysis
* Equivalence partitioning
* Decision table testing

* All-pairs testing

e State transition tables

Boundary value analysis and
equivalence partitioning
* Find the discontinuity points in the input values

* Test them (at that point and, if it makes sense,
right before and right after that)

* Test one random sample for the intervals around
discontinuity points and in domain validity
intervals

Boundary value analysis example

discounted receives the order amount and

returns a discounted value applying a 5% discount
if 1000<amount<5000 and 10% discount if amount

>= 5000
* Discontinuity values for the input:
* 1000, 5000.

* Tests:
* 1000, 1001, 4999, 5000, 50001

Equivalence partitioning example

discounted receives the order amount and

returns a discounted value applying a 5% discount
if 1000<amount<5000 and 10% discount if amount

>= 5000
* Partitions:
* [INF -1] because of input domain
* [0,1000][1000,5000][5000,SUP]
* Possible values:
* -10, 100, 3000, 8000

White-box testing

* The internal structure of the code is used to
define the test cases.

* Testing methods include:

 Data flow

* Control flow - identify a test set that allows to achieve
(full?):
— Code coverage
— Branch coverage

— Path coverage

Coverage example

Code coverage | I1 |

1;A;2:3:B;4:6;7;C;8;10 [A \

Branch coverage ‘ A
1;A;2:3;B;4:6;7;C;8;10 .
1;A;2;5;6;9;10 ——< : ;

Path coverage —

1;A;2;3;B;4;6;7;C;8;10 5 [B ‘
1;A;2;3;B;4:6;9;10 ' '
1;A;2:;5;6;7:;C;8;10
1;A;2:5;6;9;10

White vs Black pros and cons

White pro: knowledge on the code is acquired
while building the test cases

White pro: higher coverage
White con: complex
Black pro: testers who are not coders

Black pro: closer to requirements

Black con: unknown coverage

Test the tests

* How do I assess the quality of my test set?

* Mutation testing

* Create mutants of your code
* Run your tests on the mutants

* If a test passes you have a problem

* (Actually usable) mutation testing for Java: PIT

Unit testing

* In unit testing single units of code (functions,
methods) are tested.

* Unit testing is used to ensure that code meets
expectations and that code continues to meet
expectations (regression testing).

* Units have to be tested in isolation.

* The test set for each unit contains independent
cases.

Isolation?

How do we untangle the code from its
dependencies?

Use test doubles.

They provide the same interface with alternate
code.

Dependency injection greatly simplifies isolation.

Test doubles

* Test doubles replace the collaborators
(dependencies) of an object to improve isolation
and/or to check collaborations.

* Dummy - unused parameters

* Fake - simplified working implementation
* Stub - provide hard-wired responses

* Spy - stub that record interactions

* Mock - double with expectations (about calls it
receives)

Test double example

cCuT

B A
cCuT

L Y

FAKE_B FAKE_A

Test double example

cCuT

B il
cCuT

L I

FAKE_ B FAKE_A

Test double example

cuT
winterfaces: winterface=
B A

£\ £\

ConcreteB ConcreteA
CuUT
winterfaces winterfaces
B A

Unit test expectations

pout return value

oout state

pout collaboration with other objects

XUnit

* A framework for unit testing originally designed by K.
Beck.

* Most widely used implementation: JUnit [E. Gamma]

* The components of XUnit’s architecture are:

* Testrunner

* Test case (uses assertions — one per case)
* Test fixtures (or contexts)

* Test suites

* Test execution

99 little bugs in the code,
99 little bugs 53 jj

Take one down, patch it around...
127 little bugs in the code!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

