
  

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Design Patterns
part 2



  

GoF: State
● Problem: how can I change the behavior of an object 

depending on its state with a high-quality solution?
● State: allow an object to alter its behavior when its 

internal state changes.
● The object will appear to change its class.



  

GoF: State



  

State example



  

New considered armful

● Allocates memory each time a client needs a 
reference

● No control on instances lifecycle
● Changes in the constructor of the concrete class 

breaks clients (violates OCP)
● Creates a dependency between the user and the 

concrete class implemented by the reference 
(violates DIP)



  

Factory

● Decouples client from instantiation process
● Refers to the newly created object through a 

common interface



  

GoF: Factory method

● Define an interface for creating an object, but let 
subclasses decide which class to instantiate 

● Factory Method lets a class defer instantiation to 
subclasses



  

Factory Method

● A popular variation collapses the abstraction and the 
creator putting the factoryMethod inside the 
abstraction (that becomes an abstract class)

● Java API examples:
● java.util.Calendar#getInstance()
● java.text.NumberFormat#getInstance()
● java.nio.charset.Charset#forName()



  

The notification problem

Heart rate
monitor belt

Smartwatch

Smartphone

PC



  

The notification problem
● New observers can appear at a later time
● New types of observers can appear at a later time
● When a class “notifies” another it is exposed to its 

interface (thus it depends on that interface)
● ISP: The dependency of one class to another one 

should depend on the smallest possible interface
● DIP: Depend upon Abstractions
● PV: Identify points of predicted variation or 

instability; assign responsibilities to create a stable 
interface around them.



  

GoF: Observer

● Define a one-to-many dependency between objects 
so that when one object changes state, all its 
dependents are notified and updated automatically. 

Subject

attach(Observer)
detach(Observer)
notify()

<<interface>>
Observer

update()

ConcreteObserver

update()

*

for all o in observers {
    o.update()
}



  

Observer in Java
java.util.Observer

public interface Observer {

    void update(Observable o, Object arg)

}

java.util.Observable

public class Observable {

    public void addObserver(Observer o);
    public void deleteObserver(Observer o);
    public void notifyObservers();
    protected void setChanged();
    …
}



  

GoF: Façade

  Subsystem

Client

● Problem: how can I isolate a client from the internal 
complexity of a subsystem?



  

GoF: Façade
● Façade: provide a unified interface to a set of 

interfaces in a subsystem. 
● Facade defines a higher-level interface that makes 

the subsystem easier to use.

  Subsystem

Façade

Client



  

Resources

Books
● Eric Freeman & Elisabeth Robson, Head First Design 

Patterns: Building Extensible and Maintainable Object-
Oriented Software (2nd Edition), O'Reilly

Online:
● http://www.vincehuston.org/dp/
● http://www.oodesign.com/
● https://refactoring.guru/design-patterns/
● http://www.informit.com/articles/article.aspx?p=1404056

http://www.vincehuston.org/dp/
http://www.oodesign.com/
https://refactoring.guru/design-patterns/
http://www.informit.com/articles/article.aspx?p=1404056

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

