

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Design Patterns
part 1

Pattern

Each pattern describes a problem which occurs over
and over again in our environment, and then

describes the core of the solution to that problem, in
such a way that you can use this solution a million

times over, without ever doing it the same way twice
[Alexander 77]

Design Pattern

● Patterns provide “workable solutions to all of the
problems known to arise in the course of design”.
[Beck, Cunningham - 87]

● A named description of a problem, solution, when
to apply the solution, and how to apply the
solution in new contexts. [Larman]

● A general reusable solution to a commonly
occurring problem within a given context in
software design [wikipedia]

Languages and catalogs

Patterns are usually grouped into a coherent
structure with its own vocabulary, syntax (context)

and grammar (use). Patterns are linked so the
adoption of one suggests other to consider.

Patterns catalogs

The are several existing catalogs for patterns in
software engineering. We will focus on design

patterns. There are several existing catalogs for
design patterns too.

We will present design patterns from Design
Patterns: Elements of Reusable Object-Oriented

Software by Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (the Gang of Four) - 1994.

Documentation

● Pattern Name and Classification: A descriptive and
unique name that helps in identifying and referring to
the pattern.

● Intent: A description of the goal behind the pattern and
the reason for using it.

● Also Known As: Other names for the pattern.
● Motivation (Forces): A scenario consisting of a problem

and a context in which this pattern can be used.

Documentation

● Applicability: Situations in which this pattern is usable;
the context for the pattern.

● Structure: A graphical representation of the pattern.
Class diagrams and Interaction diagrams may be used for
this purpose.

● Participants: A listing of the classes and objects used in
the pattern and their roles in the design.

● Collaboration: A description of how classes and objects
used in the pattern interact with each other.

Documentation

● Consequences: A description of the results, side effects, and
trade offs caused by using the pattern.

● Implementation: A description of an implementation of the
pattern; the solution part of the pattern.

● Sample Code: An illustration of how the pattern can be used
in a programming language.

● Known Uses: Examples of real usages of the pattern.

● Related Patterns: Other patterns that have some
relationship with the pattern; discussion of the differences
between the pattern and similar patterns.

GoF patterns purposes

● Creational
● abstract the instantiation process

● Structural
● are concerned with how classes and objects are

composed to form larger structures
● Behavioral

● are concerned with algorithms and the assignment of
responsibilities between objects

The 23

● Creational: Abstract Factory, Builder, Factory
Method, Prototype, Singleton

● Structural: Adapter, Bridge, Composite,
Decorator, Facade, Flyweight, Proxy

● Behavioral: Chain of responsibility, Command,
Interpreter, Iterator, Mediator, Memento,
Observer, State, Strategy, Template method,
Visitor

Composition over inheritance
● The two most common techniques for reusing

functionality in object-oriented systems are class
inheritance and object composition

● White box vs black box
● Static vs dynamic
● Favoring object composition over class inheritance

helps you keep each class encapsulated and focused on
one task

● Delegation is a way of making composition as powerful
for reuse as inheritance (having instead of being)

What’s wrong with inheritance?

Inheritance addresses two unrelated problems at
once:
● Polymorphism, via subtyping (as an

approximation of substitutability, see LSP)
● Behavior sharing (well, state as well, but that’s

not particularly relevant here)

What’s wrong with inheritance?
Vehicle

AircraftCar Drone

What’s wrong with inheritance?

Vehicle

goTo()

Aircraft

goTo() {flight}

Drone

goTo() {flight}

Car

goTo() {drive}

Vehicle

AircraftCar Drone

What’s wrong with inheritance?

● goTo in Aircraft and in Drone behave in the
same manner

● Needless Repetition (from design smells)
Copy and paste may be useful text-editing operations, but
they can be disastrous code-editing operations.
When the same code appears over and over again, in slightly
different forms, the developers are missing an abstraction.

What’s wrong with inheritance?

Vehicle

goTo()

FlyingVehicle

goTo() {flight}

Drone

Car

goTo() {drive}

Aircraft

What’s wrong with inheritance?

Vehicle

goTo()
notifyDriver()

FlyingVehicle

goTo() {flight}

Drone

Car

goTo() {drive}

Aircraft

What’s wrong with inheritance?

● What’s wrong with our use of inheritance?
● We are not addressing OCP correctly
● We are not addressing PV correctly

● Solution
● Superclasses are not the only possible abstractions
● Use composition: more flexible and can change at run

time (favor composition over inheritance)

What’s wrong with inheritance?

Vehicle

goTo()
notifyDriver()

FlyingBehavior HumanBehaviorDriveBehavior RemoteBehavior

AircraftCar Drone

<<interface>>
GoBehavior

<<interface>>
ControlBehavior

Uses delegation

What’s wrong with inheritance?

Not a problem now!

HeliCarDrone

useRotors()
useWheels()

Vehicle

goTo()
notifyDriver()

FlyingBehavior HumanBehaviorDriveBehavior RemoteBehavior

AircraftCar Drone

<<interface>>
GoBehavior

<<interface>>
ControlBehavior

GoF: Template Method

● Problem: how can I share partially defined
behavior in a inheritance hierarchy?

● Template Method: define the skeleton of an
algorithm in an operation, deferring some steps
to subclasses.

● Template Method lets subclasses redefine certain
steps of an algorithm without changing the
algorithm's structure.

GoF: Template Method

GoF: Template Method

● Example:
Canvas/ScreenCanvas/PrinterCanvas.
DrawSpiral method: same algorithm but one
uses showPoint, the other printPoint.

● In class hierarchies I want to “push” common
behavior as high as possible. Yet sometimes, I
have behaviors that are not exactly the same
because some details change in sub-classes.

Template Method

Template Method in Java standard
library

java.util.AbstractList<E> {
 int indexOf(Object o)
 abstract E get(int index)
 …
}

Template Method

● Moves common behaviors up in the inheritance
tree even when partially specified

● New implementations of the abstract superclass
do not break clients: dependencies are directed to
more stable elements

● Helps adherence to OCP

GoF: Strategy

● Problem: how can I separate an object from (part
of) its behavior and change it at run time?

● Strategy: define a family of algorithms,
encapsulate each one, and make them
interchangeable

● Strategy lets the algorithm vary independently
from clients that use it

GoF: Strategy

Strategy

● Helps implementing OCP
● Obeys Protected Variations
● Favors composition (that is dynamic) over

inheritance (that is static): “has a” over “is a”

Resources

Books
● Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra

Head First Design Patterns
O'Reilly Media, 2004

Online:
● http://www.vincehuston.org/dp/
● http://www.oodesign.com/
● https://refactoring.guru/design-patterns/
● http://www.informit.com/articles/article.aspx?p=1404

056

http://www.vincehuston.org/dp/
http://www.oodesign.com/
https://refactoring.guru/design-patterns/
http://www.informit.com/articles/article.aspx?p=1404056
http://www.informit.com/articles/article.aspx?p=1404056

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

