Ingegneria del Software
Corso di Laurea in Informatica per il Management

Agile software development

Davide Rossi
Dipartimento di Informatica
Universita di Bologna

The problem

Efficiency: too much effort spent in overhead (all
the activities that are not directly related to the
construction of the software system). Improving the
process in order to improve the product does not
work as well as in other engineering branches.

The problem

The effort spent to guarantee adherence to the plan:
contract negotiation, comprehensive (process-
related) documentation, risk assessment, etc., could
be wasted when the plan is not crystal clear from
the beginning. Which is usually the case in software
development.

We don't just need our software to be “flexible”, we
need our whole development system to be able to
adapt to change.

Manifesto for Agile Software
Development

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

* Individuals and interactions over processes and tools.

* Working software over comprehensive documentation.
* Customer collaboration over contract negotiation.

* Responding to change over following a plan.

That is, while there is value in the items on the right, we value
the items on the left more.

Manifesto for Agile Software
Development

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair
Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

Agile software development

Agile software development is NOT:
* a process

* adesign method

Agile software development is:

* a collection of practices guided by a set of
principles inspired by values

The principles

Our highest priority is to satisty the customer through
early and continuous delivery of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

Business people and developers must work together
daily throughout the project.

The principles

Build projects around motivated individuals.

Give them the environment and support they need, and
trust them to get the job done.

The most efficient and effective method of conveying
information to and within a development team is face-to-
face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.

The principles

The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

Continuous attention to technical excellence and good
design enhances agility.

Simplicity - the art of maximizing the amount of work
not done - is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

Agile methods

In the last few years a growing number of agile-
inspired methods have been proposed:

* Agile Modeling

* Agile Unified Process

* Crystal Clear

* Extreme Programming
* Scrum

* ...and others ...

Agile lifecycle

Shippable
Functional product
requirements increment
Non-functional
requirements Work
items

Constraints Higher priority

\ } _>e|ement5 _> —> Release

Tasks

Feedback

Refactoring

Small release cycles
Continuous integration
Coding standard
Collective ownership
Planning game

Whole team

The practices

Daily meetings
Test-Driven Design

Code and design reviews
Pair programming
Document late

Use of design patterns

See http://guide.agilealliance.org/

Code review

By code review we usually mean the practice by

which new /revised code must pass a review before
being committed.

Our study reveals that while finding defects remains the main
motivation for review, reviews are less about defects than
expected and instead provide additional benefits such as
knowledge transfer, increased team awareness, and creation
of alternative solutions to problems.

Pair programming: extreme code
review

Pair programming consists of two programmers
sharing a single workstation (one screen, keyboard
and mouse among the pair). The programmer at the
keyboard is usually called the "driver”, the other,
also actively involved in the programming task but
focusing more on overall direction is the
"navigator"; it is expected that the programmers
swap roles every few minutes or so.

Test-Driven Design

[s a style of programming in which three activities are tightly
interwoven: coding, testing (in the form of writing unit tests) and
design (in the form of refactoring).

It can be described by the following set of rules:

write a single unit test describing an aspect of the program

run the test, which should fail because the program lacks that feature
write just enough code, the simplest possible, to make the test pass
refactor the code until it conforms to the simplicity criteria

repeat, accumulating unit tests over time

User stories

* Several agile software development methods
adopt user stories to represent requirements.

* User stories provide processable functional
description of the system (from the user's
viewpoint, as the name suggests) and are
processed into acceptance tests.

User stories

* User stories are concise sentences, written in the
domain language, capturing the expectations of
the users.

* User stories are NOT use cases.

User stories templates

* Most usual format:
As a <role>, I want <goal> so that <benetfit>.

* As an employee I want to purchase a parking pass
so that I can drive to work.

* "Jobs stories", from jobs to be done (JTBD):
When <event>, I want to <goal> so that
<benefit>.

* When I drive to work, I want to be able to purchase
a parking pass to access the company's parking so
that I can be at my desk on time.

Acceptance tests

* Are integral parts of user stories.

* Often follow the Given-When-Then template.

Given my bank account is in credit, and I made no
withdrawals recently,

When I attempt to withdraw an amount less than
my card’s limit,

Then the withdrawal should complete without
errors or warnings

Example

* Story: As a cyclist, I want to follow my friends’
cycling routes so that I can join them on rides

* Test: Given that the cyclist wants to ride with
friends, when they check the map view, then the

routes of other cyclists in their social network
should be visible.

Stories are volatile

Stories are not meant to survive their processing.

What persists are the associated tests.

Stories, epics, themes

Stories describing high level features are usually
collected early but are underspecified and are
refined as the project progresses

Epics are large user stories; they usually need
more than one iteration to be fully developed

Epics are split in smaller, more detailed stories
when they approach the development stage

Themes are collection of related stories

INVEST

An accepted set of criteria, or checklist, to assess the
quality of a user story:

* Independent
* Negotiable

 Valuable

 Estimable
* Small

* Testable

Independent

* Stories should not depend on each other as much
as possible.

* Asacustomer I want to buy a good with my AmEx
credit card

* As acustomer I want to buy a good with my other
credit card

Negotiable

 User stories are not contracts.

* User stories are the result of a negotiation and
are prone to be re-negotiated at any point in time.

* Often a negotiation phase takes place at
estimation time.

Valuable

e Stories must provide a value.

* Note: not always for the end user. A perspective
should be taken, and the story written from that
perspective.

Estimable

* The team should be able to estimate the level of
complexity and the amount of work need for its
processing.

* A high level of uncertainty is a good indicator that
the scope of the story is too wide or not focused
enough.

Small

* A user story should be processed in an iteration.
By the end of the iteration, they have to be
considered done.

* Iterations in agile methods are usually short and
we have more than one developer to be kept busy.

[1
PREPARE THE
INPUT STORY

Does the big story satisfy
INVEST* (except, perhaps, small)?

\
NO

X
Combine it with another story
YES orotherwise reformulate it to get
agood, if large, starting story.

Is the story size %o to
¥ of your velocity?

Continue. You
need to split it.

You're done.

What it the story is not short?

Can you take a thin slice
through the workflow first and
enhance it with more stories later?
Can you split the story so you do
the beginning and end of the work-
flow first and enhance with stories
from the middle of the workflow?

Can you split the operations
into separate stories?
Can you split the story so you
. do a subset of the rules first and
Does the story describe enhance with additional rules later?
a workflow?
; Does the story include multiple
@”'d you .Sp"t thestory operations? (eg. isit about "managing"

to just make it work first and or "configuring" something?)

then enhance it to satisfy the : Does the story have a variety of

non-functional requirement? business rules? (e.g. is there a domain

\ term in the story like "flexible dates"
Does the story get much of its that suggests several variations?)
complexity from satisfying 9
non-functional requirements like M_Y 'I'I-E
performance? _I_n
m-l m Does the story do the same
mTE“ thing to different kinds of data? Can you split the story to
Does the story have asimple process one kind of data
first and enhance with the

Could litthestoryto , ——)
Lic you spi Y core that provides most of the

do that simple core first and

value and/or learming?

enhance it with later stories?

*INVEST - Stories should be:
Independent
Negotiable
Valuable
Estimable
Small
Testable

humanizing

www.humanizingwork.com

) Does the story have a
When you apply the obvious complexinterface?

split, is whichever story you do

first the most difficult?
Could you group the later /

stories and defer the decision
about which story comes first?

Does the story get the same
kind of data via multiple interfaces?

Isthere asimple version

d

you could do first?

other kinds later?

Are you still baffled about
how to split the story?

9E\IALUNI'E
THE SPUT

Are the new stories
roughly equal in size?

Yes \

X
Is each story about NO
Yho to ¥ of your velocity? \

Try another pattemn on the
original story or the larger
Do each of the post-split stories.

stories satisfy INVEST?

\ Try another pattem.

Are there stories you
can deprioritze or delete?
Try another pattem.
You probably have waste

- in each of your stories.
Is there an obvious story
to start with that gets you
early value, leamning, risk

mitigation, etc.?
Try another pattem to

seeif you can get this.
You're done, though you
could try another pattem
to seeif it works better.

Can you find a small

piece you understand

Can you split the story to
well enough to start?

handle data fromone
interface first and enhance
with the others later?
Write that story first,
build it, and start again
at the top of this process.

Copyright ©2011-2020 Humanizing Work. All rights reserved.

Can you define the 1-3
questions most holding

u back?
ve T, Tekeabreak

and try again.
Write a spike with those
questions, do the minimum
to answer them, and start
again at the top of this process

Last updated 10/1/2020

Testable

* In most agile methods, a story is done only when

the corresponding features pass the acceptance
tests.

* No tests -> no stories done.

* Some argue for test first approaches (makes
sense, but not so easy to implement in practice).

Agile and evolution

* Development is just a part of software lifecycle,
evolution is just as important

* In agile approaches, knowledge is shared
implicitly and very little documentation is
produced: what happens when maintenance is
handed over to a different team?

* That should be document later but often times it
becomes document never.

Extreme programming - XP

* Four activities: coding, testing, listening, and
designing.

* Five values: communication, simplicity, feedback,
courage, and respect.

* Three principles: feedback, assuming simplicity,
embracing change.

XP practices

Practices in XP are split in four groups:
* fine scale feedback

* continuous process

* shared understanding

* programmer welfare

Fine scale feedback

Pair programming
Planning game
Test driven development

Whole team

Continuous process

* Continuous integration
* Design improvement

* Small releases

Shared understanding

Coding standard
Collective code ownership
Simple design

System metaphor

Programmer welfare

* Sustainable pace

ACM

Programmer welfare

pDIGITAL
LIBRARY

When do changes induce fixes?

Full Text: Tppr ¥ get this Article

Authors: Jacek Sliwerski Internaticnal Max Planck Research School, Saarbricken,

Germany

Thomas ZIMMEermann Saarland University, Saarbriicken, Sermany

Andreas Feller Saarland University, Saarbricken, Germany

Published in:

ﬂéﬁﬂ

- Proceeding

MSR '05 Proceedings of the 2005 international workshop on
Mining software repositories

Pages 1-%

ACK New York, NY, USA ©2005

table of contents ISBN:1-59593-123-6 doi=10.1145/1083142 1083147

- Mewsletter

ACM SIGSOFT Software Engineering Notes Homepage
Volume 30 Issue 4, July 2005

Pages 1-5

ACH MNew York, NY, USA

table of contents doi=10.1145/1082583.1083147

Programmer welfare

When Do Changes Induce Fixes?

(On Fridays.)

Jacek Sliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbricken, Germany

sliwers@mpi-sb.mpg.de

ABSTRACT

As a software system evolves, programmers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Thomas Zimmermann

Andreas Zeller
Department of Computer Science
Saarland University
Saarbrucken, Germany

{tz, zellery@acm.org

Which change properties may lead to problems? We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign a mefric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the

Other notable events on Fridays

ISHERIES
ESEARCH

b

i

ELSEV

IER Fisheries Research 36 (1998) 149-157

Assessing perceptions: Do Catalan fishermen
catch more shrimp on Fridays?

F. Sarda’, F. Maynou

Institut de Ciéncies del Mar (CSIC). Placa del Mar, s/n., 08039 Barcelona, Spain
Received 5 November 1997; accepted 23 February 1998

Planning game

It's the planning process in XP, it’s based on user
stories.

It’s held before each iteration. Two parts: Release
Planning (includes customers) and Iteration
Planning (developers only).

Customers sort stories by value (critical, significant
business value, nice to have), programmers by risk.

The user stories that will be finished in the next
release will be picked.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

scottadams@acl.com

www.dilbert.com

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

11-26-07 & 2007 Scott Adams, Inc./Dist. by UFS, Inc.

I'M GLAD THAT
IT HAS A WAS YOUR

NAME. TRAINING.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

