

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Agile software development

The problem

Efficiency: too much effort spent in overhead (all
the activities that are not directly related to the

construction of the software system). Improving the
process in order to improve the product does not

work as well as in other engineering branches.

The problem

The effort spent to guarantee adherence to the plan:
contract negotiation, comprehensive (process-

related) documentation, risk assessment, etc., could
be wasted when the plan is not crystal clear from

the beginning. Which is usually the case in software
development.

We don't just need our software to be “flexible”, we
need our whole development system to be able to

adapt to change.

Manifesto for Agile Software
Development

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

● Individuals and interactions over processes and tools.

● Working software over comprehensive documentation.

● Customer collaboration over contract negotiation.

● Responding to change over following a plan.

That is, while there is value in the items on the right, we value
the items on the left more.

Manifesto for Agile Software
Development

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair
Cockburn, Ward Cunningham, Martin Fowler, James

Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

Agile software development

Agile software development is NOT:
● a process
● a design method

Agile software development is:
● a collection of practices guided by a set of

principles inspired by values

The principles

● Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

● Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

● Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

● Business people and developers must work together
daily throughout the project.

The principles

● Build projects around motivated individuals.
● Give them the environment and support they need, and

trust them to get the job done.
● The most efficient and effective method of conveying

information to and within a development team is face-to-
face conversation.

● Working software is the primary measure of progress.
● Agile processes promote sustainable development.

The principles
● The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.
● Continuous attention to technical excellence and good

design enhances agility.
● Simplicity – the art of maximizing the amount of work

not done – is essential.
● The best architectures, requirements, and designs

emerge from self-organizing teams.
● At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior
accordingly.

Agile methods

In the last few years a growing number of agile-
inspired methods have been proposed:
● Agile Modeling
● Agile Unified Process
● Crystal Clear
● Extreme Programming
● Scrum
● ... and others ...

Agile lifecycle

The practices
● Refactoring
● Small release cycles
● Continuous integration
● Coding standard
● Collective ownership
● Planning game
● Whole team

● Daily meetings
● Test-Driven Design
● Code and design reviews
● Pair programming
● Document late
● Use of design patterns
● ...

See http://guide.agilealliance.org/

Code review

By code review we usually mean the practice by
which new/revised code must pass a review before

being committed.

Our study reveals that while finding defects remains the main
motivation for review, reviews are less about defects than
expected and instead provide additional benefits such as
knowledge transfer, increased team awareness, and creation
of alternative solutions to problems.
[Bacchelli, Bird]

Pair programming: extreme code
review

Pair programming consists of two programmers
sharing a single workstation (one screen, keyboard

and mouse among the pair). The programmer at the
keyboard is usually called the "driver", the other,

also actively involved in the programming task but
focusing more on overall direction is the

"navigator"; it is expected that the programmers
swap roles every few minutes or so.

Test-Driven Design

Is a style of programming in which three activities are tightly
interwoven: coding, testing (in the form of writing unit tests) and
design (in the form of refactoring).

It can be described by the following set of rules:

● write a single unit test describing an aspect of the program

● run the test, which should fail because the program lacks that feature

● write just enough code, the simplest possible, to make the test pass

● refactor the code until it conforms to the simplicity criteria

● repeat, accumulating unit tests over time

User stories

● Several agile software development methods
adopt user stories to represent requirements.

● User stories provide processable functional
description of the system (from the user's
viewpoint, as the name suggests) and are
processed into acceptance tests.

User stories

● User stories are concise sentences, written in the
domain language, capturing the expectations of
the users.

● User stories are NOT use cases.

User stories templates
● Most usual format:

As a <role>, I want <goal> so that <benefit>.
● As an employee I want to purchase a parking pass

so that I can drive to work.
● "Jobs stories", from jobs to be done (JTBD):

When <event>, I want to <goal> so that
<benefit>.
● When I drive to work, I want to be able to purchase

a parking pass to access the company's parking so
that I can be at my desk on time.

Acceptance tests

● Are integral parts of user stories.
● Often follow the Given-When-Then template.

Given my bank account is in credit, and I made no
withdrawals recently,
When I attempt to withdraw an amount less than
my card’s limit,
Then the withdrawal should complete without
errors or warnings

Example

● Story: As a cyclist, I want to follow my friends'
cycling routes so that I can join them on rides

● Test: Given that the cyclist wants to ride with
friends, when they check the map view, then the
routes of other cyclists in their social network
should be visible.

Stories are volatile

Stories are not meant to survive their processing.

What persists are the associated tests.

Stories, epics, themes

● Stories describing high level features are usually
collected early but are underspecified and are
refined as the project progresses

● Epics are large user stories; they usually need
more than one iteration to be fully developed

● Epics are split in smaller, more detailed stories
when they approach the development stage

● Themes are collection of related stories

INVEST

An accepted set of criteria, or checklist, to assess the
quality of a user story:
● Independent
● Negotiable
● Valuable
● Estimable
● Small
● Testable

Independent

● Stories should not depend on each other as much
as possible.
● As a customer I want to buy a good with my AmEx

credit card
● As a customer I want to buy a good with my other

credit card

Negotiable

● User stories are not contracts.
● User stories are the result of a negotiation and

are prone to be re-negotiated at any point in time.
● Often a negotiation phase takes place at

estimation time.

Valuable

● Stories must provide a value.
● Note: not always for the end user. A perspective

should be taken, and the story written from that
perspective.

Estimable

● The team should be able to estimate the level of
complexity and the amount of work need for its
processing.

● A high level of uncertainty is a good indicator that
the scope of the story is too wide or not focused
enough.

Small

● A user story should be processed in an iteration.
By the end of the iteration, they have to be
considered done.

● Iterations in agile methods are usually short and
we have more than one developer to be kept busy.

What if the story is not short?

Testable

● In most agile methods, a story is done only when
the corresponding features pass the acceptance
tests.

● No tests -> no stories done.
● Some argue for test first approaches (makes

sense, but not so easy to implement in practice).

Agile and evolution

● Development is just a part of software lifecycle,
evolution is just as important

● In agile approaches, knowledge is shared
implicitly and very little documentation is
produced: what happens when maintenance is
handed over to a different team?

● That should be document later but often times it
becomes document never.

Extreme programming - XP

● Four activities: coding, testing, listening, and
designing.

● Five values: communication, simplicity, feedback,
courage, and respect.

● Three principles: feedback, assuming simplicity,
embracing change.

XP practices

Practices in XP are split in four groups:
● fine scale feedback
● continuous process
● shared understanding
● programmer welfare

Fine scale feedback

● Pair programming
● Planning game
● Test driven development
● Whole team

Continuous process

● Continuous integration
● Design improvement
● Small releases

Shared understanding

● Coding standard
● Collective code ownership
● Simple design
● System metaphor

Programmer welfare

● Sustainable pace

Programmer welfare

Programmer welfare

Other notable events on Fridays

Planning game

It’s the planning process in XP, it’s based on user
stories.

It’s held before each iteration. Two parts: Release
Planning (includes customers) and Iteration

Planning (developers only).

Customers sort stories by value (critical, significant
business value, nice to have), programmers by risk.

The user stories that will be finished in the next
release will be picked.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

