

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

GRASP

Responsibility-driven design

● How to use OO principles to design a software
system?

● RDD is a method to design software systems on
the basis of responsibilities [Rebecca Wirfs-Brock
and Brian Wilkerson].

● The UML defines a responsibility as "a contract or
obligation of a classifier".

Responsibility

Doing responsibilities of an
object include:
● doing something itself,

such as creating an object
or doing a calculation

● initiating action in other
objects

● controlling and
coordinating activities in
other objects

Knowing responsibilities of
an object include:
● knowing about private

encapsulated data
● knowing about related

objects
● knowing about things it

can derive or calculate

RDD

In RDD responsibilities are assigned to classes of
objects during object design.

RDD

In RDD responsibilities are assigned to classes of
objects during object design.

Beware: slavish assignment of
responsibilities can easily lead to
a design exhibiting the de-facto
standard software architecture

RDD

In RDD responsibilities are assigned to classes of
objects during object design.

Beware: slavish assignment of
responsibilities can easily lead to
a design exhibiting the de-facto
standard software architecture:
the big ball of mud [Foote, Yoder –
PLoP'97].

GRASP to the rescue

GRASP (General Responsibility Assignment
Software Patterns) can be used to perform RDD

while guaranteeing that solid construction
principles are used.

To Larman, GRASP is a learning aid for OO design
with responsibilities: it helps one understand

essential object design and apply reasoning in a
methodical, rational, explainable way.

Pattern

Each pattern describes a problem which occurs over
and over again in our environment, and then

describes the core of the solution to that problem, in
such a way that you can use this solution a million

times over, without ever doing it the same way twice
[Alexander 77]

Design Pattern

● Patterns provide “workable solutions to all of the
problems known to arise in the course of design”.
[Beck, Cunningham - 87]

● A named description of a problem, solution, when
to apply the solution, and how to apply the
solution in new contexts. [Larman]

● A general reusable solution to a commonly
occurring problem within a given context in
software design. [wikipedia]

GRASP patterns

● Creator
● Information Expert
● Low Coupling
● Controller
● High Cohesion

● Polymorphism
● Pure Fabrication
● Indirection
● Protected Variations

Information Expert (or Expert)

● P: How do we assigning responsibilities to objects
so that our systems tend to be easier to
understand, maintain, and extend, and our
choices afford more opportunity to reuse
components in future applications.

● S: Assign a responsibility to the information
expert, the class that has the information
necessary to fulfill the responsibility.

Creator
● P: who should be responsible for creating a new

instance of some class?
● S: Assign class B the responsibility to create an

instance of class A if one of these is true (the
more the better)
● B "contains" or compositely aggregates A
● B records A
● B closely uses A
● B has the initializing data for A that will be passed to

A when it is created. Thus B is an Expert with respect
to creating A.

Controller

● P: Which object receives and coordinates ("controls") a
system operation?

● S: Assign the responsibility to a class representing one of
the following choices:
● Represents the overall "system," a "root object," a

device that the software is running within, or a major
subsystem these are all variations of a facade
controller.

Controller

● Represents a use case scenario within which the
system event occurs, often named
<UseCaseName>Handler,
<UseCaseName>Coordinator, or
<UseCaseName>Session (use case or session
controller).
– Use the same controller class for all system events in

the same use case scenario.
– Informally, a session is an instance of a conversation

with an actor. Sessions can be of any length but are
often organized in terms of use cases (use case
sessions).

Low Coupling

● P: How to support low dependency, low change
impact, and increased reuse?

● S: Assign a responsibility so that coupling
remains low. Use this principle to evaluate
alternatives.

High Cohesion

● P: How to keep objects focused, understandable,
and manageable, and as a side effect, support
Low Coupling?

● S: Assign a responsibility so that cohesion
remains high. Use this to evaluate alternatives.

High Cohesion

A class with low cohesion does many unrelated things or
does too much work. Such classes are undesirable; they
suffer from the following problems:
● hard to comprehend
● hard to reuse
● hard to maintain
● delicate; constantly affected by change

Low cohesion classes often represent a very "large grain"
of abstraction or have taken on responsibilities that
should have been delegated to other objects.

Pure Fabrication

● P: What to do when you do not want to violate
High Cohesion and Low Coupling, or other goals,
but solutions offered by Expert (for example) are
not appropriate?

● S: Assign a highly cohesive set of responsibilities
to an artificial or convenience class that does not
represent a problem domain concept something
made up, to support high cohesion, low coupling,
and reuse.

Indirection

● P: Where to assign a responsibility, to avoid direct
coupling between two (or more) things? How to
de-couple objects so that low coupling is
supported and reuse potential remains higher?

● S: Assign the responsibility to an intermediate
object to mediate between other components or
services so that they are not directly coupled.

Polymorphism

● P: Conditional variation by using control-flow
statements produces code that is hard to extend.

● S: Use alternatives based on type. When related
alternatives or behaviors vary by type (class),
assign responsibility for the behavior using
polymorphic operations to the types for which
the behavior varies.

Protected Variations

● P: How to design objects, subsystems, and
systems so that the variations or instability in
these elements does not have an undesirable
impact on other elements?

● S: Identify points of predicted variation or
instability; assign responsibilities to create a
stable interface around them.

Protected Variations

● “OCP is essentially equivalent to [...] Protected
Variation”. [C. Larman]

● LSP formalizes the principle of protection against
variations in different implementations of an
interface, or subclass extensions of a superclass.

● The “Law of Demeter” is also a special case of PV.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

