

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Software quality and
Object Oriented Principles

Design goal

● The goal of design-related activities is to produce
high-quality software systems

● What is high-quality software?

Software and quality

 External qualities
 Qualities the end user can perceive

 Functional
 Non functional

 Internal qualities
 Qualities related to how the software is organized

External qualities

Source: Steve McConnell - Code Complete

 Correctness
 Usability
 Efficiency
 Reliability
 Integrity
 Adaptability
 Accuracy
 Robustness

Internal qualities

Source: Steve McConnell - Code Complete

 Maintainability
 Flexibility
 Portability
 Re-usability
 Readability
 Testability
 Understandability

Internal qualities

Source: Steve McConnell - Code Complete

 Maintainability
 Flexibility
 Portability
 Re-usability
 Readability
 Testability
 Understandability

Always code as if the guy who ends
up maintaining your code will be a
violent psychopath who knows where
you live.

Software is not write-once

Costs associated with software evolution are high,
an estimated 50%–90% of total software

production costs

SquaRE – ISO 25010

Software product Quality Requirements and
Evaluation.

An evolution of ISO 9126 (and ISO 14598).

Three quality models: software product
quality model, data quality model, quality in

use model.

ISO 25010

Software product quality (characteristics can be
measured internally or externally).

 Security
 Compatibility
 Maintainability
 Portability

 Functional suitability
 Reliability
 Performance efficiency
 Operability

ISO 25010

Quality in use
 Effectiveness
 Efficiency
 Satisfaction
 Safety
 Usability

Do we need a framework to assess
quality ?

● Yes, at times.
● But most of the times we just want our software

to be reusable and designed for change.

Do we need a framework to assess
quality ?

● Yes, at times.
● But most of the times we just want our software

to be reusable and designed for change.

OO Principles

We design OO systems, so we have to correctly
identify our objects and find the right mix of

encapsulation, inheritance and polymorphism in
order to obtain high-quality software.

Principles can be used to guarantee the
maximization of software qualities.

Basic OO concepts

● Abstraction: focus on essential characteristics
(w.r.t. the perspective of the viewer).

● Encapsulation: hide the details (your status).
● Inheritance: behavior and state can be

specialized.
● Polymorphism: behavior depends on who you

are.

OO Principles

The critical design tool for software development is
a mind well educated in design principles

[C. Larman]

Design smells

● Rigidity
● Fragility
● Immobility
● Viscosity
● Needless complexity
● Needless repetition
● Opacity

Source: Robert C. Martin - Agile Principles, Patterns, and Practices

Design smells
● Rigidity

Rigidity is the tendency for software to be difficult to change,
even in simple ways. A design is rigid if a single change
causes a cascade of subsequent changes in dependent
modules. The more modules that must be changed, the more
rigid the design.

● Fragility
Fragility is the tendency of a program to break in many
places when a single change is made. Often, the new
problems are in areas that have no conceptual relationship
with the area that was changed. Fixing those problems leads
to even more problems.

Design smells
● Immobility

A design is immobile when it contains parts that could be
useful in other systems, but the effort and risk involved with
separating those parts from the original system are too great.
This is an unfortunate but very common occurrence.

● Viscosity
Viscosity of the software: some options to make changes in a
software system preserve the design; others do not. When
the design-preserving methods are more difficult to use than
the hacks, the viscosity of the design is high.
Viscosity of environment: when the development
environment is slow and inefficient.

Design smells

● Needless Complexity
Needless complexity of a design in when it contains elements
that aren't currently useful. This frequently happens when
developers anticipate changes to the requirements and put
facilities in the software to deal with those potential changes.

● Needless Repetition
Copy and paste may be useful text-editing operations, but
they can be disastrous code-editing operations.
When the same code appears over and over again, in slightly
different forms, the developers are missing an abstraction.

Design smells

● Opacity
Opacity is the tendency of a module to be difficult to
understand. Code can be written in a clear and expressive
manner, or it can be written in an opaque and convoluted
manner. Code that evolves over time tends to become more
and more opaque with age. A constant effort to keep the code
clear and expressive is required in order to keep opacity to a
minimum.

Dependencies
● The root cause for most smells can be traced back

to dependency management.
● Dependency is the key problem in software

development at all scales. [K. Beck]
● Dependencies are potential paths for the

diffusion of changes.
● From UML’s definition of dependency: “Indicates that

changes to one model element [...] can cause changes
in another model element”.

SOLID

 Single responsibility principle
 Open-closed principle
 Liskov substitution principle
 Interface segregation principle
 Dependency inversion principle

SRP: Single responsibility principle

 A class should have one, and only one, reason to
change.

 Each responsibility is an axis of change.
 If a class has more than one responsibility, the

responsibilities become coupled. Changes to one
responsibility may impair or inhibit the class's
ability to meet the others. This kind of coupling
leads to fragile designs.

OCP: open-closed principle

 A class should be open for extension, but closed
for modification(1).
– Can be generalized to: software entities (classes, modules,

functions, etc.) should be open for extension, but closed for
modification.

 Failing to respect OCP leads to a change resulting
in cascades of changes (rigidity). OCP advises us
to refactor our design to avoid that.

(1) Bertrand Meyer - Object Oriented Software Construction

Refactoring

Refactoring is a disciplined technique for
restructuring a software system so that its internal
structure is modified without changing its external

behavior

LSP: Liskov substitution principle

 The relation among classes in a hierarchy should
be sub-typing

 “What is wanted here is something like the
following substitution property: If for each object
o1 of type S there is an object o2 of type T such
that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is
substituted for o2 then S is a subtype of T.”(1)

(1) Barbara Liskov - Data Abstraction and Hierarchy

LSP: Liskov substitution principle

If a method f, accepting as argument a reference to
B, misbehaves when is passed a reference to an

instance of D, subclass of B, then D is fragile in the
presence of f.

The Liskov Substitution Principle is one of the
prime enablers of OCP.

Rules to guarantee respect of LSP

● Structural
● Contravariance of method parameter types
● Covariance of method return types
● No new exceptions

Rules to guarantee respect of LSP

● Behavioral
● Preconditions cannot be strengthened in the subtype
● Postconditions and invariants cannot be weakened in

the subtype
● The history constraint must be respected

– Subtypes can only change inherited state elements
accordingly with the allowed mechanisms present in the
supertype

ISP: interface segregation principle

The dependency of one class to another one should
depend on the smallest possible interface.

Or: clients should not be forced to depend on
methods they do not use.

Failing to respect this principle can lead to
unneeded dependencies and to degenerate

implementations of interfaces, causing needless
complexity and potential violations of LSP.

DIP: dependency inversion principle

Depend upon Abstractions.

A) High level modules should not depend upon low level
modules. Both should depend upon abstractions.

B) Abstractions should not depend upon details. Details
should depend upon abstractions.

Layered architectures

"All well structured object-oriented architectures
have clearly-defined layers, with each layer

providing some coherent set of services through a
well-defined and controlled interface." [G. Booch]

Layered is a family of very common architectural
styles.

Beware of layers

A naive application of the layered style can easily
lead to a violation of the DIP.

A common solution is to make lower layers
dependent upon a service interface declared in

upper layers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

