

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Davide Rossi
Dipartimento di Informatica

Università di Bologna

UML: State machine diagram

State machine

A behavioral state machine describes a discrete
event-driven behavior of a system or a part of a

system as the traversal of a graph of vertices
(usually states) connected by transitions.

A protocol state machine describes the lifecycle or
the valid interactions sequences (protocols) for

parts of a system (a classifier).

Example: door

State

● State: a situation in which some invariant
condition holds

● Same stimulus → same response
● Same active behavior
● States can be:

● Simple: no internal vertices or transitions
● Composite: contains one or more regions – states in

these regions are called substates
● Submachine

State

● States can be associated to the following
behaviors:
● entry
● exit
● doActivity

● doActivity behavior execute concurrently with
any other state-associated behavior and is
aborted if not finished when the state is exited

● Basic notation: rounded rectangle

States: notation

A State may be subdivided into multiple compartments
separated from each other by a horizontal line. The
compartments are:

● name compartment

● internal Behaviors compartment

● internal Transitions compartment

● decomposition compartment (for composite states)

Notations:

Transition

● Transition: describes the (atomic) passage from one
state to another

● Transitions are triggered by events. During the traversal
the state machine can execute some activities

● Transitions can have guards (conditions), if the guard is
false the event is discarded and the transition does not
take place

● Transition with guards but no events are evaluated when
the internal behavior of the source state is terminated
(that is, the event is the completion of the internal
behavior)

Transition: notation

Source Target
event [guard] / actions

Event

● Event: observable occurrence (in the
environment of the subject)

● Takes place at a point in time (has no duration)
● May have parameters
● Basic event types are:

● MessageEvent (CallEvent, SignalEvent)
● ChangeEvent
● TimeEvent

Final state and pseudostates
● The final state is a special kind of state signifying

that the enclosing region has completed.
● Several pseudostates are used to enrich the

semantics of the state machine:

● initial
● join
● fork
● junction

● choice
● entryPoint
● exitPoint
● terminate

Dialing example

Digital clock example

© IvanoMalavolta

Regions
● States and transitions can be organized in

(possibly hierarchical) regions
● Orthogonal regions describe concurrent behavior

Course attempt example

Pseudostates

● Initial: represents the stating point of a region. It
is the source of at most one transition not
associated to a trigger or a guard

● Join: is the target for two or more transitions
originating from vertices in different orthogonal
regions; they perform a synchronization
function where all incoming transition have to
complete before execution can continue through
an outgoing transition

Pseudostates

● Fork: split an incoming transition into one or
more transitions terminating in vertices
contained in different orthogonal regions of a
composite state

● Junction: merges or splits transitions
● Choice: is a type of junction used to realize

dynamic conditional branching. An else guard
can be used on a predefined transition that is
selected when all other guards on outgoing
transitions evaluate to false

Pseudostates

● EntryPoint: entry point for a composite or
submachine state.

● ExitPoint: exit point for a composite or
submachine state.

● Terminate: entering terminate the state
machine execution is terminated immediately.

Use of entry/exit points

ATM example

State history

State history is used to keep track of the state
configuration of a region. The region can be reset to

a state configuration by a (local) transition
connecting to a history pseudostate.

deepHistory pseudostates restore the full state
configuration; shallowHistory pseudostates restore

only the topmost substate.

Transitions: details

● In the course of execution a transition is:
● reached
● traversed
● completed

● A transition can be associated to a set of triggers.
Triggers are associated to events (event types)
and are enabled when the associated event
occurs

Transitions: details

● A transition can have guard constraints. Guards
are evaluated before the compound transition
they are in is enabled (unless they are sourcing
from a choice pseusostate). Transitions
associated to guards evaluating to false are
disabled

● Transitions syntax (simplified):

{<trigger>}* ['['<guard>']'] [/<behavior-expr>]

Action/signal send/signal receipt
symbols

Compound transitions

A trigger can cause the traversal of an acyclic part of
the state machine with no further event processing

taking place. This part is called compound
transition.

That means that the processing of a single event can
trigger several transitions traversing several

(pseudo)states.

Run-to-completion

Upon creation a state machine performs its initialization
executing the initial compound transition. Then it enters a

wait point. When events are dispatched, triggers are
evaluated and, if at least a transition can be triggered, a new

compound transition is executed (a step) and a new wait
point is reached. This cycle repeats until either the state

machine complete its behavior or until it is asynchronously
terminated by some external agent. This execution model is

known as run-to-completion (RTC).

Run-to-completion

Event occurrences are detected, dispatched, and
processed by the StateMachine execution, one at a

time. Completion event have priority, other than
that event dispatching order in undefined.

A single event can trigger multiple transitions. If
these transitions have a non-empty exit states

intersection they are conflicting. The priorities of
conflicting Transitions are based on their relative

position in the state hierarchy.

Run-to-completion

The RTC model simplifies the management of
concurrency in state machines: when the machine is

not in a well-defined state it is not responsive, i.e.
event dispatching is not performed.

When events that take place they are not
immediately processed but are stored in an event

queue.

Example: door protocol

Another ATM example

Source: uml-diagrams.org

Dishwasher example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

