

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

UML: Interaction diagrams

Sequence diagrams

Sequence diagrams are the most common kind of
interaction diagrams; they focuses on the message

interchange between a number of lifelines.

Sequence diagrams describe interactions by
focusing on the sequence of messages that are

exchanged and their corresponding occurrence
specifications on the lifelines.

Example: a system sequence diagram

Elements of sequence diagrams

Lifeline

A lifeline is a named element which represents an
individual participant in the interaction. While parts

and structural features may have multiplicity
greater than 1, lifelines represent only one

interacting entity.

Message

A message is a named element that defines one
specific kind of communication between lifelines of

an interaction. The message specifies not only the
kind of communication, but also the sender and the

receiver. Sender and receiver are normally two
occurrence specifications (messages endpoints).

Messages by Action Type

A message reflects either an operation call and a
start of execution or a sending and reception of a
signal. Depending on the type of action that was
used to generate the message, message could be one
of:
● synchronous call/asynchronous call
● asynchronous signal
● reply
● create
● delete

Synchronous Call

Synchronous calls typically represent operation
call - send message and suspend execution while
waiting for response. Synchronous call messages

are shown with filled arrow head.

Asynchronous Call

Asynchronous calls - send message and proceed
immediately without waiting for return value.

Asynchronous messages have an open arrow head.

Reply Message

A reply message to an operation call is shown as a
dashed line with open arrow head (looks similar to

creation message).

Create Message

A create message is sent to a lifeline to create itself.
It is common practice to send a create message to a

(still) nonexisting object to create itself.

Delete Message

A delete message is sent to terminate another
lifeline. The lifeline usually ends with a cross in the

form of an X at the bottom denoting a destruction
occurrence.

Lost & founds

Gate

A gate is a message end, a connection point for
relating a message outside of an interaction

fragment with a message inside the interaction
fragment.

sd example

b : B<<create>>

<<destroy>>

a : Aa : A

b : B

in

out

Interaction Fragment

An interaction fragment is a named element
representing the most general interaction unit. Each

interaction fragment is conceptually like an
interaction by itself. There is no general notation for

an interaction fragment. Its subclasses define their
own notation.

Examples of interaction fragments are: occurrence,
execution, state invariant, combined fragment,

interaction use.

Occurrence

An occurrence (complete name: occurrence
specification) is an interaction fragment which

represents a moment in time (event) at the
beginning or end of a message or at the beginning

or end of an execution.

An occurrence specification is one of the basic
semantic units of interactions. The meanings of

interactions are specified by sequences of
occurrences described by occurrence specifications.

Execution

An execution (full name - execution specification,
informally called activation) is an interaction
fragment which represents a period in the
participant's lifetime when it is:
● executing a unit of behavior or action within the

lifeline,
● sending a signal to another participant,
● waiting for a reply message from another

participant

Execution

Combined Fragment

A combined fragment is an interaction fragment
which defines a combination of interaction

fragments. A combined fragment is defined by an
interaction operator and corresponding interaction
operands. Through the use of combined fragments

the user will be able to describe a number of traces
in a compact and concise manner.

Combined fragment may have interaction
constraints (guards).

Combined Fragment

Interaction operator could
be one of:
● alt – alternatives
● opt - option
● loop - iteration
● break - break
● par - parallel

● strict – strict sequencing
● seq - weak sequencing
● critical - critical region
● ignore - ignore
● consider - consider
● assert - assertion
● neg - negative

Combined Fragment

Interaction Use

An interaction use is an interaction fragment
which allows to use (or call) another interaction.
Large and complex sequence diagrams could be

simplified with interaction uses. It is also common
reusing some interaction between several other

interactions.

SD do's and don'ts

● Don't over-generalize sequences
● When using SD for analysis

● A use case can be described by more than one SD
● Message's action type can be decided at design time
● No messages between lifelines belonging to elements

of the system

Communication Diagrams

● A communication diagram shows the interactions
between lifelines using a free-form arrangement.

● Communication diagrams can be converted into
sequence diagrams (but NOT the other way
around in UML 2).

● It is assumed that messages are received in the
same order as they are generated.

Communication Diagrams

● A communication diagram can contain frames,
lifelines and messages.

Messages

● The notation for messages in communication
diagrams follow the same rules used in sequence
diagrams.

● In order to understand the dynamic evolution of
the system, messages have a sequence
expression.

Sequence expressions
Sequence-expression ::=

 sequence-term '.' . . . ':' message-name

Sequence-term ::= [integer[name]][recurrence]

Sequence terms are used to represent the nesting of
messages within an interaction.

a : A b : B

msg1

c : C

msg2

msg3

sd sequence

a : A b : B

1: msg1

c : C

1.1: msg22: msg3

sd communication

Concurrency and recurrence

● Sequence-term ::= [integer[name]]
[recurrence]

Messages that differ only for the
name part are considered concurrent

● recurrence ::= branch | loop

branch ::= '[' guard ']'

Guards specify conditions for the message to
happen
2.3b [x>y]: draw()

Acknowledgments

These slides include work by Paolo Ciancarini, Sara
Zuppiroli and Gian Piero Favini.

Some diagrams and texts have been taken from
http://www.uml-diagrams.org.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

