

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

UML Class diagram
survivor's guide

Disclaimer

The content of these slides is intended to give an
informal introduction to UML class diagrams. They

contain several simplifications and even some
intentional mistake.

UML classes

A class is a type representing objects sharing
common features.

A class is depicted as a solid-outline rectangle with
the class name in it and is potentially divided in

compartments separated by horizontal lines below
the name.

Usual compartments are the operations
compartment and the attributes compartment.

Classes notation examples

Properties and operations

● Properties are structural features of a class.
Simplified syntax:
[+,-,#,~][/]<name>[:<type>][<mult>]

● Operations are behavioral features of a class.
Simplified syntax:
[+,-,#,~]<name>[(<params>)][:<type>]

Visibility kind

● + : public - visible to all

● - : private - visible within its namespace

● # : protected - visible to elements that have a
generalization relationship to it

● ~ : package - visible to all elements within the
nearest enclosing package

Multiplicity
<multiplicity-range> ::= [<lower>..] <upper>

Where * means unlimited upper bound.

Ordered/unordered, unique/nonunique can
follow the range.

Often used multiplicities are:
● 1
● 0..1
● 1..*
● *

Instances

Instances (a.k.a. objects) are, well, instances. They
obey the structure of class they are instances of.

Objects of a class must contain values for each
attribute that is a member of that class, in

accordance with the characteristics of the attribute,
such as its type and multiplicity.

Instances notation

The graphic notation is similar to that of classes but
the name appears underlined and is a concatenation

of the instance name (if any), a colon (‘:’) and the
class it is an instance of.

Instances notation examples

Relationships

Several relationships can be drawn in class
diagrams:
● Generalization
● Dependency
● Realization
● Association
● Aggregation
● Composition

Generalization/specialization

Generalization/specialization are root concepts in
MOF that assumes a more detailed behavior when

used between classes.

Each Generalization relates a specific class to a more
general class and an inheritance-like mechanism is

assumed.

An “is-a” relationship exists between the two
elements, corresponding to inheritance in

programing languages.

Generalization: notation

Dependency

A Dependency signifies a supplier/client
relationship between model elements where the
modification of a supplier may impact the client
model elements.
A Dependency implies that the semantics of the
clients are not complete without the suppliers.

Dependency: notation

A Dependency is shown as a dashed arrow between
two classes. The arrow may be labeled with an
optional keyword or stereotype and an optional
name.

Realizations
A Realization is a kind of Dependency and is shown
as a dashed line with a triangular arrowhead at the
end that corresponds to the realized Element.

The realising must realize, or implement, the
behavior that the other specifies.

Association

An association declares that there can be links
between instances of the associated types. A link is a
tuple with one value for each end of the association.

Associations have names that can be displayed and
labels with arrows that help reading the direction of

the label.

Association ends can have names, multiplicities and
navigation arrows or crosses.

Association Class: notation

Navigation: arrows and crosses

Navigation: arrows and crosses

● Show all arrows and crosses: navigation and its
absence are made completely explicit.

● Suppress all arrows and crosses: no inference can be
drawn about navigation.

● Suppress all crosses: suppress arrows for Associations
with navigability in both directions, and show arrows
only for Associations with one-way navigability: In this
case, the two-way navigability cannot be distinguished
from situations where there is no navigation at all;
however, the latter case occurs rarely in practice.

Aggregation

An aggregation (real name: shared aggregation)
tells us that part instance is independent from the
composite.

Composition

Composition (real name: composite aggregation) is a
whole/part binary association. The composite
object has responsibility for the existence and
storage of the composed objects.

Abstract classes

An abstract class has no direct instances: its
instances are instances of one of its specializations.

The name of an abstract class is shown in italics
or/and using the textual annotation {abstract}.

Interfaces

Interfaces declare coherent services that are
implemented by classes that implement them. An

Interface specifies a contract; any instance of a class
that realizes the interface shall fulfill that contract.

Domain models examples
(analysis models)

[h
ttp
://w

w
w
.u
m
l-d
ia
g
ra
m
s. o
rg]

[h
ttp
://w

w
w
.u
m
l-d
ia
g
ra
m
s. o
rg
]

Design models examples

[http://www.uml-diagrams.org]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

