

Davide Rossi
Dipartimento di Informatica

Università di Bologna

Ingegneria del Software
Corso di Laurea in Informatica per il Management

UML: Use case

Use case diagrams

Use case diagrams are behavior diagrams used to
describe a set of actions (use cases) that a system

(subject) should or can perform in collaboration
with one or more external users of the system

(actors). Each use case should provide some
observable and valuable result to the actors or other

stakeholders of the system.

A use case is not a diagram element

A use case is a list of actions or event steps typically
defining the interactions between a role (or actor)

and a system to achieve a goal

Use of use case diagrams

Use case diagrams are used to specify:
● (external) requirements on a subject, required usages of

a system - to capture what a system under construction
is supposed to do;

● the functionality offered by a subject – what system can
do;

● requirements the specified subject poses on its
environment - by defining how environment should
interact with the subject so that it will be able to perform
its services.

UC elements

Actor

Actor

System, subject

Use case

UC: actor

In UML an actor is behaviored classifier which specifies a
role played by an external entity that interacts with the

subject (e.g., by exchanging signals and data), a human user
of the designed system, some other system or hardware

using services of the subject.

The standard UML notation for an actor is the "stick man"
icon with the name of the actor above or below of the icon.

Custom icons that convey the kind of actor may also be used
to denote an actor, such as using a separate icon(s) for non-

human actors.

UC: subject

The subject is the system under analysis or design to
which a set of use cases apply. The subject could be a

business, software system, physical system, or a smaller
subsystem having some behavior. In UML terms, subject is a

use case classifier playing the "subject" role.

Subject is presented by a rectangle with subject name in
upper corner with the applicable use cases inside the

rectangle and actors - outside of the system boundaries.

UC: use case
In UML a use case is a behaviored classifier which
specifies the behavior of a subject by describing a

set of sequences of actions performed by the
system to yield an observable result of some value

to one or more actors or other stakeholders of the
system. In other words, each use case describes a
unit of complete and useful functionality that the

subject provides to its users.

Use case is usually shown as an ellipse containing
the name of the use case.

Relationships Between Actors

We can define abstract or concrete actors and specialize
them using generalization relationship.

Generalization between actors is rendered as a solid
directed line with a large arrowhead (same as for

generalization between classes).

Associations Between Actors and Use
Cases

Each use case specifies a unit of useful functionality
that the subject provides to actors. This

functionality should be initiated by an actor. Actors
may be connected to use cases only by binary

association relationship.

Relationships Between Use Cases

Use cases could be organized using the following
relationships:
● generalization
● extend
● include
● (association)

Generalization Between Use Cases

Generalization is shown as a solid directed line with
a large hollow triangle arrowhead, the same as for

generalization between classifiers, directed from
the more specific use case to the general use case.

Extend Relationship
Extend is a directed relationship that specifies how and

when the behavior defined in a supplementary extending
use case can be inserted into the behavior defined in the

extended use case.

The extension takes place at one or more extension points
defined in the extended use case.

Extend relationship is shown as a dashed line with an open
arrowhead directed from the extending use case to the

extended (base) use case. The arrow is labeled with the
keyword «extend».

Extension Point

An extension point is a feature of a use case which
identifies (references) a point in the behavior of the

use case where that behavior can be extended by
some other (extending) use case, as specified by

extend relationship.

Extension points may be shown in a compartment
of the use case oval symbol under the heading

extension points. Each extension point must have a
name, unique within a use case.

Extension example

Include Relationship

An include relationship is a directed relationship
between two use cases when a required, not
optional behavior of the included use case is
inserted into the behavior of the including use case.

The include relationship could be used:
● when there are common parts of the behavior of

two or more use cases,
● to simplify large use case by splitting it into

several use cases.

Include Relationship

The include relationship between use cases is
shown by a dashed arrow with an open arrowhead
from the including (base) use case to the included

(common part) use case. The arrow is labeled with
the keyword «include».

UC diagram example

System use case vs business use case

● In a system use case the subject is a system
● In a business use case the subject is an

organization
● Black box vs white box approach

● It follows that in business use case actors can be
internal to the organization

Extent of system use case

● The smallest unit of activity that provides a
meaningful result to the user

● Defined by goals that can be accomplished in a
session

● A dozen steps at the most
● When a use case involves multiple actors with

different goals this should be modeled as multiple
use cases

UC do's and don'ts

● Avoid interface creeping (no UI details in UCs)​
● Don't decompose for other reasons than reuse
● Master the differences between generalization, include

and extend
● Do not create new stereotyped relationships
● Remember: actors are external to the system (for system

UCs)
● Time can be an actor

Detail and reuse

UC model and UC diagram

● A UML use case diagram is NOT a use case model
● The diagram can be seen as a summary
● Missing aspects;

● When the UC applies, associated non-functional
requirement, pre/post-conditions, …

● Details about the interaction steps
● There is NO a standard notation to model use

case details. Several textual templates have been
proposed.

Cockburn’s “fully dressed”

● Title: "an active-verb goal
phrase that names the
goal of the primary actor"

● Primary Actor
● Goal in Context
● Scope
● Level
● Stakeholders and

Interests

● Precondition
● Minimal Guarantees
● Success Guarantees
● Trigger
● Main Success Scenario
● Extensions
● Technology & Data

Variations List
● Related Information.

Example

K. Wiegers, J. Beatty - User requirements – Microsoft Press

A simpler UC specification template

● ID
● Actors
● Pre-conditions
● Main sequence
● Alternative sequences
● Post-conditions

Sequence example
MAIN SUCCESS SEQUENCE (a.k.a. Happy path)

1. User selects the option to enter a new transfer order

2. System shows the transfer order form (destination account
details, amount, date)

3. User enters data in the transfer form and chooses to execute
order

4. System displays order accepted message

EXTENSIONS

3a. Amount higher than availability:

3a1. System shows error message and returns to step 2

Scenarios

● A scenario can be seen as a UC instance
● It describes a possible interaction between

actor(s) and the system
● Scenarios are useful for documentation purposes

and to create test cases.

States of a UC model

A UC model is usually subject to iterative
refinements:
● Goal Established
● Story Structure Understood
● Simplest Story Fulfilled
● Sufficient Stories Fulfilled
● All Stories Fulfilled

Acknowledgments

These slides include work by Paolo Ciancarini, Sara
Zuppiroli and Gian Piero Favini.

Some diagrams and texts are taken from
http://www.uml-diagrams.org.

Exercise
A blog is a web application presenting a collection of
date-tagged messages (posts) on miscellaneous
topics. Messages are posted by the blog owner who
puts them online. The author can associate
messages to one or more categories (expressed
using keywords).

Blog’s visitors can comment messages; the
comments, if approved by a moderator (usually the
blog’s owner), appear in a specific section under the
original message.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

