

Ingegneria del Software
Corso di Laurea in Informatica per il Management

Davide Rossi
Dipartimento di Informatica

Università di Bologna

O-O modeling and UML

Modeling

● A model is an (abstract) representation of reality.
● Models are used to capture relevant (from the

point of view of the modeler) properties allowing
more focused reasoning.

● Models are also useful to share knowledge.
● Creating models is a natural process.

Modeling languages

● Models are expressed with languages.
● Languages are systems of signs for encoding and

decoding information.
● Modeling languages define the entities

composing the modeled subject, their properties
and their relationships.

O-O principles

● O-O is a paradigm that shift the focus of analysis
and design from algorithms and data to objects,
intended as autonomous entities with a state and
a behavior.

● The main O-O principles are: abstraction,
encapsulation, inheritance and polymorphism.

O-O principles

● Abstraction: focus on essential characteristics
(w.r.t. the perspective of the viewer).

● Encapsulation: hide the details (your status).
● Inheritance: behavior and state can be

specialized.
● Polymorphism: behavior depends on who you

are.

Inheritance

● Reuse of an existing object (prototype-based) or
an existing class (class-based).

● In some object models class-based inheritance
implies sub-typing:
sub-class is a base-class.

● In some object models sub classes can override
(specialize) part of the behavior of the base class.

Polymorphism

● In languages supporting class-based inheritance
as a sub-typing mechanism, an object instance of
a sub-class can be used whenever a base-class
type is required (sub-type polymorphism).

● In Java, for example, object references can be
polymorphic.

● When a behavior is activated the outcome
depends on the type of the object, not on the type
of the reference (dynamic dispatching).

Object oriented modeling with UML

● UML is a modeling language
● UML assumes on object-oriented approach for

both analysis and design.
● Analysis focuses on the problem domain.
● Design focuses on the solution domain.
● UML supports both aspects (but it is agnostic

with respect to how).

Brief history of UML

The adoption of object-oriented analysis and design
methods in the 80s lead to the development of
several modeling languages.

Between 1989 and 1994 the number of O-O
methods increased from 10 to more than 50.

Prominent methods included Booch’s method,
Jacobson’s OOSE (Object-Oriented Software
Engineering) and Rumbaugh’s OMT (Object-
Modeling Technique).

Brief history of UML

In 1994 Rumbaugh joins Booch at Rational (coming
from General Electric) and started working on a
unification of Booch and OMT methods. In 1995
Jacobson joined rational too (coming from
Objectory).

UML (Unified Modeling Language) 0.9 was released
in June 1996.

UML 1.0 was offered for standardization to the OMG
in January 1997.

UML 2.0 was adopted by the OMG in early 2005.

Modeling languages history

[wikipedia]

UML

● UML is a modeling language for software-
intensive systems.

● It is a graphical, semi-formal language that is
used to specify, visualize, construct and document
software artifacts.

● Artifacts are the products of a software
development process.

What UML is not

● UML is not a software development process.
● UML in independent from the project domain,

from the development process, from specific
programming languages and specific
development tools.

Syntax and semantics in UML

● UML is a language, not just a graphical notation; it
has syntactic rules and semantic rules.

● Syntactic rules define how to create valid
diagrams.

● Semantic rules define how to create meaningful
diagrams.

MOF

● UML is defined on top of an OMG modeling
standard called MOF (Meta-Object Facility).

● MOF is structured in 4 levels: M0, M1, M2, M3.
● MOF-based languages (such as UML) can be

serialized as defined by the XMI (XML Metadata
Interchange) standard.

The 13 UML diagrams

UML primitives

● A UML model includes:
● Classifiers (sets of things);
● Events (sets of occurrences);
● Behaviors (sets of executions).

● Allowed element distinguish among different
diagram types.

UML grouping entities

● Packages are used to group elements and give
them a namespace.

UML containment

● In UML several elements can contain other
elements; creating a hierarchical structure. These
relations can be depicted graphically.

UML information entities

● Annotation: improves the readability of a
diagram; it has no effect on the model.

UML relationships

● Relationships correlate two or more elements in a
model. They are represented as lines and can
have names.

● 4 basic types of relationships:
● Association
● Generalization
● Dependency
● Realization

Stereotypes

● A stereotype is rendered as a name enclosed by
guillemets « » or << >>.

● They allow designers to extend the vocabulary of
UML in order to create new model elements,
derived from existing ones, but that have specific
properties.

OCL

● OCL (Object Constraint Language) is an OGM
specification.

● It is a declarative language for describing rules
that apply to Unified Modeling Language.

● It provides constraint and object query
expressions.

OCL constraints

● inv: invariant
● pre: precondition
● post: postcondition
● body: a query in a context
● init: initial value in a context
● derive: define a derived attribute in a context

OCL in UML diagrams

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 19
	Slide 20
	Slide 23
	Slide 24
	Slide 27
	Slide 28
	Slide 33
	Slide 34
	Slide 35
	Slide 36

