Lesson 8

Generative Models
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Generative Models

Generative Model: a model that tries to learn the actual
distribution pga¢, of real data from available samples (training set).

Goal: build probability distribution p,ode; Close to pyata-

We can either try to
P explicitly estimate the distribution

» build a generator able to sample according to pmoder, possibly
providing estimations of the likelihood
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Why studying Generative Models?

e improve our knowledge on data and their distribution in the
visible feature space

e improve our knowledge on the latent representation of data
and the encoding of complex high-dimensional distributions

e tipical approach in many problems involving multi-modal
outputs

e find a way to produce realistic samples from a given
probability distribution

e generative models can be incorporated into reinforcement
learning, e.g. to predict possible futures
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Multi-modal output

In many interesting cases there is no unique intended solution to
a given problem:

- add colors to a gray-scale image

- guess the next word in a sentence

- fill a missing information

- predict the next state/position in a game

When the output is intrinsically multi-modal (and we do not want
to give up to the possibility to produce multiple outputs) we need
to rely on generative modeling.
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Latent variables models

In we express the probability of a data point
X through marginalization over a vector of latent variables:

P(X) :/P(X|z)P(z)dz ~ E P(X|z) (1)
z~P(z)
. X
This simply means that we try to learn )
a way to sample X starting from a vec- Generator
tor of values z (this is P(X|z)), where PX12)

z is distributed with a know prior dis-
tribution P(z). z is the latent en-
coding of X.
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Generative models

There are four main classes of generative models:
» compressive models

- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)

» dimension preserving models

- Normalizing Flows
- Denoising Diffusion Models

The models differ in the way the generator is trained

Generator
PXlz)
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VAE

In a Variational Autoencoder the generator is coupled with an
encoder producing a latent encoding z given X. This will be
distributed according to an inference distribution Q(z|X).

Encoder Generator ~
— = L =
X Qz1X) P(X12) X

The loss function aims to:

» minimize the reconstruction error between X and X

» bring the marginal inference distribution Q(z) close to the
prior P(z)
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GAN

In a Generative Adversarial Network, the generator is coupled with
a discriminator trying to tell apart real data from fake data
produced by the generator.

Generator
PXI S
(X 12) 3

Detector and Generator are trained together.

Discriminator —= yes/no

The loss function aims to:
» instruct the detector to spot the generator

P instruct the generator to fool the detector
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Normalizing Flows

In Normalizing Flows the generator is split into a long chain of
invertible transformations.

filz0) filin) fona(@)
OO - O=@ - j&

2o ~ po(Zo) z; ~ pi(2i) 2k ~ Pk (2K)

The network is trained by maximizing loglikelihood.

> Pros: it allows a precise computation of the resulting
loglikelihood

» Cons: the fact of restricting to invertible transformation limit
the expressiveness of the model
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Diffusion Models

In Diffusion Models the latent space is understood as a strongly
noised version of the image to be generated.

The generator is split into a long chain of denoising steps, where
each step t attempts to remove gaussian noise with a given
variance o;.

Po(Xt—1[X¢)
@H @8z H

We train a single network implementing the denoising operation,
parametric in o¢.
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Next argument

Variational Autoencoders

Suggested reading;:
A survey on Variational Autoencoders from a GreenAl Perspective
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https://arxiv.org/abs/2103.01071

The problem with the deterministic autoencoder

An autoencoder is a net trained to reconstruct input data out of a
learned internal representation (e.g. minimizing quadratic distance)

DNN
Encoder

DNN
Decoder

Latent
Space
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The problem with the deterministic autoencoder

An autoencoder is a net trained to reconstruct input data out of a
learned internal representation (e.g. minimizing quadratic distance)

DNN
Encoder

DNN
Decoder

Latent
Space

Can we use the decoder to generate data by sampling in the
latent space?
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The problem with the deterministic autoencoder

An autoencoder is a net trained to reconstruct input data out of a
learned internal representation (e.g. minimizing quadratic distance)

DNN
Encoder

DNN
Decoder

Latent
Space

Can we use the decoder to generate data by sampling in the
latent space?

No, since we do not know the distribution of latent variables.
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Variational autoencoder

In a Variational Autoencoder (VAE) we try to force latent
variables to have a known prior distribution P(z) (e.g. a Normal
distribution)

DNN DNN

Encoder Decoder

If the distribution computed by the generator is Q(z|X) we try to
force the marginal distribution Q(z) = Ex~p,,,, Q(z|X) to look
like a normal distribution.
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Different moments for each point

Latent Space

We assume Q(z|X) has a Gaussian =4 A
distribution G(u(X),o(X)) with QX =G0, 00
different moments for each differ- /
ent input X.

\
\
QX3 = G(u(X), 6(Xy)

The values p(X),o(X) are both computed by the generator, that
is hence returning an encoding z = p(X) and a variance o(X)

around it, expressing the portion of the latent space essentially
encoding an information similar to X.
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Sampling in the latent space

During training, we sample around p(X) with the computed o(X)
before passing the value to the decoder

Latent Space

sampling

DECODER

Among other things, sampling add noise to the encoding,
improving its robustness.
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The full picture

KL[Q(zX) Il N(0,1)]
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Generation of new samples

1(X) and X£(X) are not used to generate new samples from the
input domain (we have no X)

f(z)

|

Decoder

(P)

Sample z ~ N(0,1)
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The effect of KL-divergence

Latent Space

The effect of the KL-divergence on latent variables consist in

» pushing p,(X) towards 0, so as to center the latent space
around the origin

» push o,(X) towards 1, augmenting the “coverage” of the
latent space, essential for generative purposes.
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Problems with VAE

B balancing loglikelihood and KL regularizer in the loss function
B variable collapse phenomenon
B marginal inference vs prior mismatch

B blurriness (aka variance loss)
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VAE Demo

DEMO!
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Next argument

Generative Adversarial
Networks

Suggested reading:
NIPS 2016 Tutorial: Generative Adversarial Networks
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https://arxiv.org/abs/1701.00160

The GAN approach: a two player game

A game between the generator and the discriminator

/ O real data _—
ey r sigmoi
’l @ pduta( ) function
9 | Discriminator 1
Network
Generator D(x)
Network ]
generated
data

Generative Adversarial Networks |.J.Goodfellow et al., 2014
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https://arxiv.org/abs/1406.2661

A Min Max game

Min(;MaxD V(D, G)

V(Dv G) = EXdiata(x)[log D(X)] + EZNPZ(Z)[IOg (1 - D(G(Z)))]

> By pyu(x)log D(x)] = negative cross entropy of the
discriminator w.r.t the true data distribution

> E,p.(s)llog (1 — D(G(z)))] = negative cross entropy of the
“false” discriminator w.r.t the fake generator
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Training

Alternately train the discriminator, freezing the generator, and the
generator freezing the discriminator:

for number of training iterations do
for & steps do

 Sample minibatch of 1 noise samples {z), | zi™1Y from noise prior py(z).
» Sample minibatch of m examples {=, | 2™} from data generating diswibution
Ptan ().

» Update the discriminator by ascending its stochastic gradient:

Lo
Voum 2 el () +108 (1-0 (6 (=)))].
i Zl og T + log z
end for
» Sample minibatch of m noise samples { z' N zr-'"]} from noise prior p, (z).

» Update the generator by descending its stochastic gradient:

v‘,,,%g.og(l —p(c(=1))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
Lum in our experiments.
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An example

. a

Y/ Y/ /i

(a) (b) (c) (dy

Figure 1: Generative adversarial nets are tained by simultaneously updating the discriminative distribution
(2, blue, dashed line) so that it discriminates between ples from the data generating distribution (black,
dotted line} pa from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which = is sampled. in this case uniformly. The horizontal line above is part of the domain
of @. The upward arrows show how the mapping @ = Gz} imposes the non-uniform distribution p, on
transformed samples. (7 contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: py is similar to pae and D) is a partially accurate classifier.
b} In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D (x) =
(¢} After an update to (7. gradient of 12 has guided () to flow to regions that are more likely
as data. (d) After several steps of training. if (7 and [) have enough capacity, they will reach a
point at which both cannot improve because p; = juw. The discriminator is unable to differentiate between
the two distributions, i.e. Dix) = %
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A simple demo

. /"r Andrea Asperti

28



http://cs.stanford.edu/people/karpathy/gan/

Stay inside the data manifold

Patches from the natural image manifold (red) and super-resolved
patches obtained with MSE (blue) and GAN (orange).

Pixel-wise average of possible solu- _

. . . Natural Image Manifold
tions could produce images outside ) MSE-based Solution
the actual data manifold.

GAN drives the reconstruction to-
wards the natural image manifold
producing perceptually more con-

vincing solutions.

picture from Photo-Realistic Single Image Super-Resolution. C.Ledig et al., 2016.
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https://arxiv.org/abs/1609.04802

An application: super-resolution

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.53dB/0.7832)
=~ v

original

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4x upscaling]

Forcing to operate a choice - instead of mediating - could result in
sharper images

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial

Network. C.Ledig et al., 2016. - = -
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https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1609.04802

An application: face generation

Goal: Generation of plausible realistic photographs of human
faces.

Face generation video by Nvidia
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https://www.youtube.com/watch?v=XOxxPcy5Gr4

Problems with Gans

» the fact that the discriminator get fooled does not mean the
fake is good (neural networks are easily fooled)

» problems with counting, perspective, global structure, ...

» mode collapse: generative specialization on a good, fixed
sample

See lan Goodfellows' slides
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http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

Next argument

Latent space exploration

Interpreting the Latent Space of GANs for Semantic Face Editing
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https://ieeexplore.ieee.org/document/9399843

Attribute editing

#Y) Andrea Asperti
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Key ideas behind Representation Learning

The generative process is continuous: a small deplacement in the
latent space produces a small modification in the visible space.

Real-world data depends on a relatively small number of
explanatory factors of variation (latent features) providing
compressed internal representations.

Understanding these features we may define trajectories
producing desired alterations of data in the visible space.
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Entanglement and disentanglement

n; — (anng)ng

When there is more than one attribute, editing one may affect
another since some semantics can be coupled with each other
(entanglement).

To achieve more precise control (disentanglement), we can use
projections to force the different directions of variation to be
orthogonal to each other.
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Comparing spaces

Learn a direct map between spaces

Z,

Comparing the latent space of generative models

Andrea Asperti
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https://arxiv.org/abs/2207.06812

Achievements

We can pass from a latent space to another by means of a simple
linear map preserving most of the content.

The organization of the latent space seems to be independent from
P the training process
P the network architecture
> the learning objective: GAN and VAE share the same space!

The map can be defined by a small set of points common to the
two spaces: the support set. Locating these points in the two
spaces is enough to define the map.

See also my blog for a discussion.

Andrea Asperti 38


https://mydeeplearningblog.wordpress.com/

Next argument

Diffusion models

Fixed Forward Diffusion Process

Moise

Generative Reverse Denoising Process

Suggested reading: What are diffusion models
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

The denoising network

The denoising network implements the inverse of the operation of
adding a given amount of noise to an image (direct diffusion).

The denoising network takes in input:
1. a noisy image x;
2. a signal rate a; expressing the amount of the original signal
remaining in the noisy image

and try to predict the noise in it:
EG(Xta at)

The predicted image would be:

X0 = (xe — V1 —ay - eg(xe, )/

Andrea Asperti 40



Training step

take an input image xp in the training set and normalize it
- consider a signal ratio a;
- generate a random noise € ~ N(0, 1)

- generate a noisy version x; of xp defined as
Xt = /O - Xg + \/l—Oét'G

- let the network predict the noise €y(x¢, at) from the noisy
image x; and the signal ratio a;

- train the network to minimize the prediction error, namely

le = eoxe, e
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Sampling procedure

fix a sheduling ar >ar_1>....... >

- start with a random noisy image x7 ~ N(0, 1)

- for tin T...1 do:

- compute the predicted error ep(x¢, at)

- compute Xo = (xr — V1 —ar - eg(xe, ar)) //ar

- if t £ 0, obtain x;_1 reinjecting noise at rate a;_1, namely

Xt—1 = /0r—1-Xo+ /1 —01-€
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Network architecture

Use a (conditional) Unet!

input
image
tile

28 et e 2

output
I*I*)*| segmentation
21 e 88 map

= conv 3x3, ReLU
= copy and crop

§ max pool 2x2
4 up-conv 2x2

= conv 1x1
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