
Lesson 3

Expressiveness & Training

Andrea Asperti 1

Next argument

Expressiveness

Andrea Asperti 2

Expressiveness

Can we compute any function by means of a Neural Network?

Do we really need deep networks?

Can we compute any function with a single neuron?

Andrea Asperti 3

Single layer case: the perceptron

Binary threshold:

w1

output

x

x

b

+1

Σ

inputs

 function

activation

bias

1

x2
2w

n

nw

output =

{
1 if

∑
i wixi + b ≥ 0

0 otherwise
output =

{
1 if

∑
i wixi ≥ −b

0 otherwise

Remark: the bias set the position of threshold.

Andrea Asperti 4

Hyperplanes

The set of points ∑
i

wixi + b = 0

defines a hyperplane in the space of the variables xi

Example:

−1

2
x1 + x2 + 1 = 0

is a line in the bidimensional
space x1

x2

0,1

2,0

Andrea Asperti 5

Hyperplanes

The hyperplane ∑
i

wixi + b = 0

divides the space in two parts: to one of them (above the line) the
perceptron gives value 1, to the other (below the line) value 0.

“above” and “below” can be inverted by just inverting parameters:∑
i

wixi + b ≤ 0⇐⇒
∑
i

−wixi − b ≥ 0

Andrea Asperti 6

Computing logical connectives: NAND

Can we implement this function (NAND) with a perceptron?

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we find two weights w1 and w2 and a bias b such that

nand(x1, x2) =

{
1 if

∑
i wixi + b′ ≥ 0

0 otherwise

Andrea Asperti 7

Computing logical connectives: NAND

Can we implement this function (NAND) with a perceptron?

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we find two weights w1 and w2 and a bias b such that

nand(x1, x2) =

{
1 if

∑
i wixi + b′ ≥ 0

0 otherwise

Andrea Asperti 8

Graphical representation

Same as asking:
can we draw a straight line to separate green and red points?

x

x

1

20,0

0,1 1,1

1,0

NAND

Andrea Asperti 9

Lines, planes, hyperplanes

Yes!
x

x

1

20,0

0,1 1,1

1,0

NAND

line equation: 1.5− x1 − x2 = 0 or 3− 2x1 − 2x2 = 0

Andrea Asperti 10

The NAND-perpceptron

output =

{
1 if − 2x1 − 2x2 + 3 ≥ 0

0 otherwise

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we compute any logical circuit with a perceptron?

Andrea Asperti 11

The NAND-perpceptron

output =

{
1 if − 2x1 − 2x2 + 3 ≥ 0

0 otherwise

x1 x2 output

0 0 1
0 1 1
1 0 1
1 1 0

Can we compute any logical circuit with a perceptron?

Andrea Asperti 12

The XOR case
Can we draw a straight line separating red and green points?

x

x

1

20,0

0,1 1,1

1,0

No way!

Single layer perceptrons are not complete!

Andrea Asperti 13

The XOR case
Can we draw a straight line separating red and green points?

x

x

1

20,0

0,1 1,1

1,0

No way!

Single layer perceptrons are not complete!

Andrea Asperti 14

Multi-layer perceptrons

Question:

- we know we can compute nand with a perceptron

- we know that nand is logically complete
(i.e. we can compute any connective with nands)

so:

why perceptrons are not complete?

answer:

because we need to compose them and consider
Multi-layer perceptrons

Andrea Asperti 15

Multi-layer perceptrons

Question:

- we know we can compute nand with a perceptron

- we know that nand is logically complete
(i.e. we can compute any connective with nands)

so:

why perceptrons are not complete?

answer:

because we need to compose them and consider
Multi-layer perceptrons

Andrea Asperti 16

Example: Multi-layer perceptron for XOR

Can we compute XOR by stacking perceptrons?

Multilayer perceptrons are logically complete!

Andrea Asperti 17

Important Points

• shallow nets are already complete

Why going for deep networks?

With deep nets, the same function may be computed with
less neural units (Cohen, et al.)

• Activation functions play an essential role, since they are the
only source of nonlinearity, and hence of the expressiveness of
NNs.

Composing linear layers not separated by nonlinear activations
makes no sense!

Andrea Asperti 18

https://arxiv.org/abs/1509.05009

Next argument

Training

Andrea Asperti 19

Current loss

Suppose to have a neural network with some configurations of the
parameters θ.

11
w

11

w

11
w

w

w

1

1

w

1

12

21

22

w

w
1

2

2

2

w
2

3

3

12

21

22

w
21

We can take a batch of data, pass them (in parallel) through the
network, compute the output, and evaluate the current loss
relative to θ.

This is a forward pass through the network.

Andrea Asperti 20

Parameter updating

Next, we would like to adjust the parameters in such a way to
decrease the current loss.

Each parameter should deserve a different adjustment, some of
them positive, other negative.

The mathematical tool that allows us to establish in which way
parameters should be updated is the gradient: a vector of partial
derivatives.

Andrea Asperti 21

Backpropagation

The gradient is computed backward, backpropagating the loss to
all neurons inside a networks, and their connections.

Backpropagation
←−−−−−−−−−−−−−−−−−−

This is a backward pass through the network.

The algorithm for computing parameters updates is known as
backpropagation algorithm.

Andrea Asperti 22

Learning rate

The backpropagation algorithms only gives a direction in which
gradients should be updated.

The actual amount of the update is obtained by multiplication
with a scalar hyperparameter (fixed externally, not learned) called
learning rate.

Increasing the learning rate can make
training faster, but it reduces the ac-
curacy of the result.

If we make large steps nearby the op-
timum, we can miss it.

Andrea Asperti 23

Optimizer

Many techniques can be used to tune the learning rate during
training.

The tool in charge of governing the gradient descent technique -
possibly dynamically adapting the learning rate - is the so called
optimizer (e.g. Adam, in our example).

Many possibilites:
- Use a fixed learning rate
- adapt the global learning rate during time
- adapt the learning rate on each connection separately
- use the so called momentum
- . . .

suggested lecture: Geoffrey Hinton’s lecture

Andrea Asperti 24

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Varying the batchsize

Parameters are updated every time a batch is processed.

During an epoch, we make a total number of updates equal to the
size of the training set divided by the batchsize.

If we decrease the batchsize we update more frequently (that is
good), but updates are less accurate, since we are backpropagating
form a loss relative to very specific data.

Conversely, if we increase the batchsize, updates grow in accuracy
(the ideal would be to compute them on the whole training set -
fullbatch) but training can be slow, since parameters are too rarely
updated.

Andrea Asperti 25

Fullbatch, Online and MiniBatch

Fullbatch (all training samples):
the gradient points to the direction of
steepest descent on the error surface
(perpendicular to contour lines of
the error surface)

Online (one sample at a time)
gradient zig-zags around the
direction of the steepest descent.

Minibatch (random subset of training samples): a good
compromise.

Andrea Asperti 26

Next argument

The Backpropagation algorithm
(and its problems)

Andrea Asperti 27

Computing the gradient

A neural network computes a complex function resulting from the
composition of many neural layers. How can we compute the
gradient w.r.t. a specific parameter (weight) of the net?

We need a mathematical rule know as the chain rule (for
derivatives).

Andrea Asperti 28

The chain rule

Given two derivable functions f , g with derivatives f ′ and g ′, the
derivative of the composite function h(x) = f (g(x)) is

h′(x) = f ′(g(x)) ∗ g ′(x))

Equivalently, letting y = g(x),

h′(x) = f ′(g(x)) ∗ g ′(x)) = f ′(y) ∗ g ′(x)

The derivative of a composition of a sequence of functions is the
product of the derivatives of the individual functions.

QUESTION: why binary thresholding is not a good activation
function for backpropagation?

Andrea Asperti 29

Backpropagation rules in vectorial notation

Given some error function E (e.g. euclidean distance) let us define the
error derivative at l as the following vector of partial derivatives:

δl =
∂E

∂z l

We have the following equations

(BP1) δL = ∇aLE � σ′(zL)

(BP2) δl = (W l+1)T δl+1 � σ′(z l)

(BP3) ∂E
∂bl

j

= δlj

(BP4) ∂E
∂w l

jk

= al−1k δlj

w1

b

+1

w

x = al l−1

a
1
l−1

a n
l−1

a l
z l

σΣ

l

l
w

l l

 j
 j

 j

 j

n j

k j

a k
l−1

...
...

δ
l

 j

node j

llayer

where � is the Hadamard product (component-wise)

Andrea Asperti 30

The vanishing gradient problem

(BP2) δl = (w l+1)T δl+1 � σ′(z l)

By the chain rule, the derivative is a long sequence of factors,
where these factors are, alternately

I derivatives of activation functions

I derivative of linear functions, that are constants (in fact, the
transposed matrix of the linear coefficients)

Let’s have a look at the derivatives of a couple of activation
functions.

Andrea Asperti 31

Derivatives of common activation functions

Sigmoid

Observe the flat shape of σ′(x), always below 0.25

Relu

Andrea Asperti 32

The vanishing gradient problem

If you systematically use the sigmoid as activation function in all
layers of a deep network, the gradient will contain a lot of factors
below 0.25, resulting in a very small value.

If the gradient is close to zero, learning is impossible.

This is known as the vanishing gradient problem.

Andrea Asperti 33

A bit of history

The vanishing gradient problem blocked the progress on neural
netwoks for almost 15 years (1990-2005).

It was first bypassed by network pre-training (e.g. with Boltzmann
Machines), and later by the introduction on new activation
functions, such as Rectified Linear Units (RELU), making
pre-training obsolete.

Still, fine-tuning starting from good network weights (e.g. VGG) is
a viable approach for many problems (transfer learning).

Andrea Asperti 34

