Ingegneria del Software

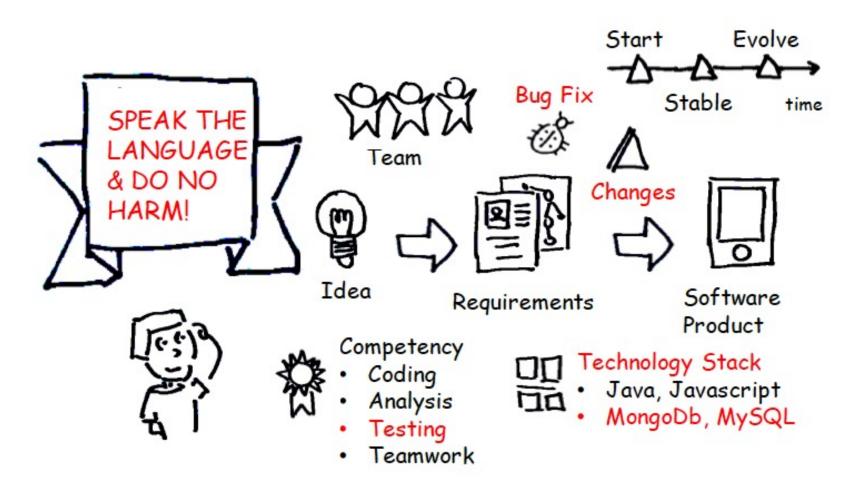
Corso di Ingegneria del Software CdL Informatica Università di Bologna

Obiettivi di questa lezione

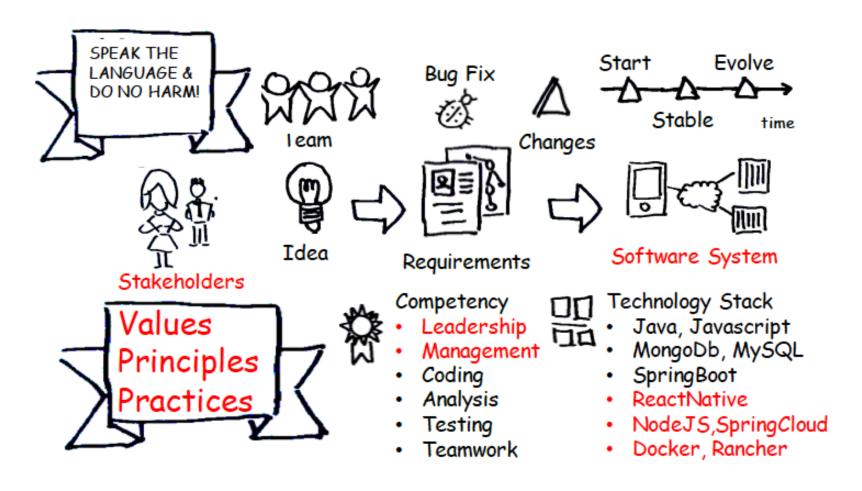
- Cos'è l'ingegneria del software?
- Il ciclo di vita del software
- Il processo di sviluppo del software
- Miti e leggende della produzione sw

From programming to development

Cosa è più difficile:


scrivere software, oppure leggerlo (per es. per modificarlo)?

Come si sviluppa il software?


Punto di vista: studente

Deliver Start What I think software Stable Team engineering is about Idea Software Requirements Product Competency Programming Language Coding Javascript Teamwork

Punto di vista: tesista in azienda

Punto di vista: professionista

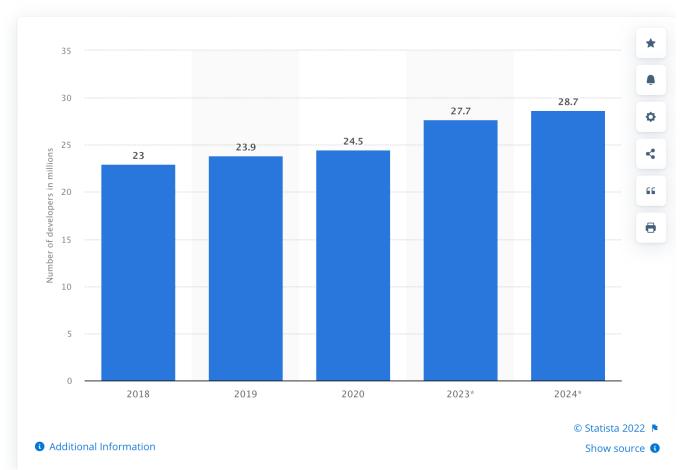
Da Quora (risposta di P Lovisek)

What is something no one admits about being a sw developer?

As a manager who is hiring and also leading mid-size team, I've observed this:

- A lot of colleagues tend to have unexpectedly huge gaps in knowledge. I would almost use the word "dilettante" for 30% of them. That itself is not a huge issue, as it's easy to fill gaps with some effort. Some of them however somehow survive in corporate environment with their "good enough" knowledge and carry their gaps for years and decades.
- The thing is, before 25, you learn just enough to survive, typically google+stackoverflow combo. In later years, you become lazier, than you've got kids and no time for in-depth study of your technologies and tools.
- There are also 2 related issues:
 - Companies are not likely to hire/pay more really extraordinary well-equipped guys. Mostly they just want someone average. Therefore, being super-deep in your topics actually can hurt you in hiring process.
 - Things are evolving so fast no one knows any more what makes sense to learn. Things will be different tomorrow. Old saying says, there's nothing older than yesterday's news. Well, there is: today's technology.

Ingegneria del software


- L'Ingegneria del Sw (Software Engineering) è una disciplina metodologica, cioè studia i metodi di produzione, le teorie alla base dei metodi, e gli strumenti di sviluppo e misura della qualità dei sistemi software
- È anche una disciplina empirica, cioè basata sull'esperienza e sulla storia dei progetti passati
- NB: manca una TEORIA dell'ingegneria del sw

La professione

Technology & Telecommunications > Software

Number of software developers worldwide in 2018 to 2024

(in millions)

La professione

- Nei paesi anglosassoni "software engineer" è una professione riconosciuta
- Oltre metà di tutti gli ingegneri USA sono "sw engineers"

Fonte: https://en.wikipedia.org/wiki/Software_engineering_demographics#United_States

http://computer-careers-review.toptenreviews.com/software-engineer-review.html dati al 2015 https://evansdata.com/reports/viewRelease.php?reportID=9 dati al 2018

Confronto con altre professioni

Information Security Analyst

#1 in Best Technology Jobs

As concern about cybersecurity grows, so does the demand for information security analysts. It is the duty of these professionals to prepare and carry out security measures that protect a company's computer networks and systems. **READ MORE** »

PROJECTED JOBS 47,100

MEDIAN SALARY \$103,590

EDUCATION NEEDED

Bachelor's

Software Developer

#2 in Best Technology Jobs

Software developers need to be innovative, creative and, of course, technical in order to succeed in this field. They might write new code or fix bugs in code to make it work better. **READ MORE** »

PROJECTED JOBS

409,500

MEDIAN SALARY \$110,140

EDUCATION NEEDED

Bachelor's

Data Scientist

#3 in Best Technology Jobs

Data scientists use technology to glean insights from large amounts of data they collect. **READ MORE** »

PROJECTED JOBS 19.800

MEDIAN SALARY \$98,230

EDUCATION NEEDED

Bachelor's

Dove sono meglio pagati i SwEng

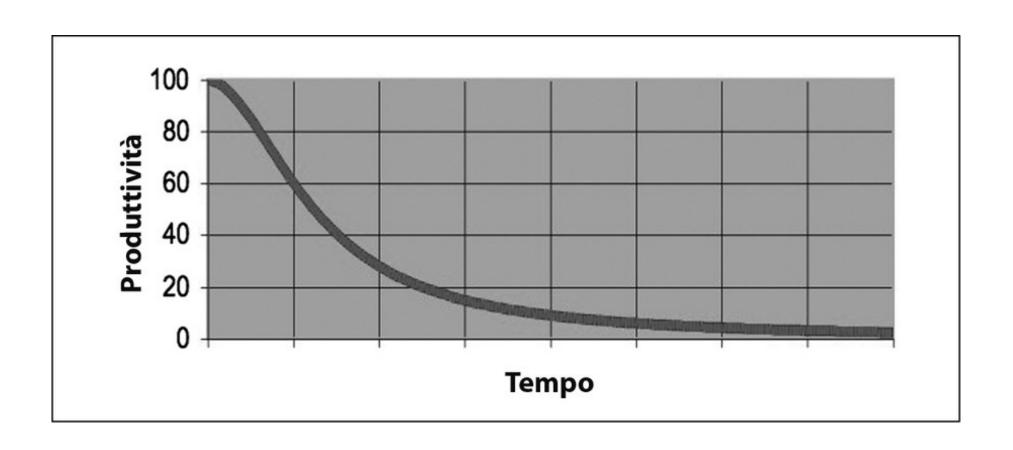
Real Earnings (USD) Ranking									
Rank	USA Cities	Real Earnings	Rank	International Cities	Real Earnings				
1	Seattle	50,438	1	Berlin	36775.68				
2	San Jose	47,631	2	Tel Aviv	29072.12				
3	Houston	41,830	3	Montreal	28306.92				
4	Dallas	41,669	4	Vancouver	25431.88				
5	Baltimore	41,387	5	Sydney	23367.08				
6	Phoenix	41,097	6	Toronto	22673.2				
7	Austin	39,111	7	Tokyo	21927.28				
8	Raleigh	38,480	8	Melbourne	19400.8				
9	San Diego	36,863	9	Oslo	18190.64				
10	Detroit	36,798	10	Paris	18001.72				
11	Philadelphia	36,239	11	Amsterdam	17310.76				
12	Portland	35,883	12	Taipei	13914.12				
13	Denver	35,845	13	London	11187.16				
14	Atlanta	34,646	14	Warsaw	10286.64				
15	Minneapolis	33,677	15	Sao Paulo	8608.92				
16	Los Angeles	32,849	16	Singapore	7875.24				
17	San Francisco	32,153	17	Seoul	5614.64				
18	Chicago	31,943	18	Hong Kong	4277.68				
19	Washington DC	29,429	19	Moscow	2737.6				
20	Boston	29,241	20	Bangalore	807.12				
21	New York	23,515	21	Beijing	-194.76				
			22	Shanghai	-2302.52				

Real Earnings (USD) Ranking 2021									
Rank	USA Cities	Real Earnings	Rank	International Cities	Real Earnings				
1	Seattle	41,164	1	Berlin	43,904				
2	Houston	35,544	2	Tel Aviv	32,698				
3	Phoenix	35,534	3	Montreal	30,983				
4	Austin	34,975	4	Vancouver	25,082				
5	Dallas	34,950	5	Sydney	22,147				
6	San Jose	34,167	6	Tokyo	21,766				
7	Raleigh	32,093	7	Toronto	21,567				
8	Miami	30,959	8	Melbourne	20,546				
9	Baltimore	30,457	9	Amsterdam	18,082				
10	Denver	30,194	10	Oslo	16,415				
11	Portland	29,811	11	Paris	15,612				
12	Minneapolis	27,884	12	Singapore	12,783				
13	Atlanta	27,490	13	Taipei	11,657				
14	Detroit	27,086	14	Warsaw	9,957				
15	San Diego	26,959	15	London	7,534				
16	Los Angeles	26,526	16	Moscow	6,021				
17	Philadelphia	25,884	17	Sao Paulo	6,016				
18	Chicago	25,589	18	Seoul	5,105				
19	San Francisco	24,968	19	Beijing	1,948				
20	Washington DC	22,618	20	Hong Kong	1,078				
21	Boston	20,166	21	Bangalore	-170				
22	New York	10,425	22	Shanghai	-983				

Come vengono pagati gli sviluppatori di sw?

Produttività

- La produttività è il rapporto tra la quantità di beni o servizi prodotti ed il costo del lavoro necessario a produrli
 - Output/Input.


Esempio: produco 1000 caramelle al costo di 100 euro.

La produttività è: 10 caramelle per ogni euro speso

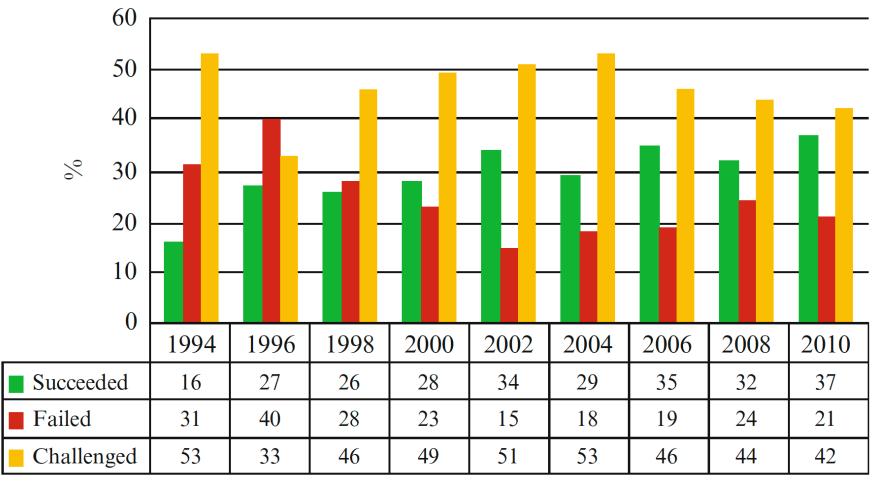
Produttività degli sviluppatori

- La produttività dello sviluppo software è il rapporto tra software prodotto (misurato in LoC: Lines of Code) e il costo dello sforzo (effort, misurato in giorni/persona) di produrlo
 - LoC/effort (esempio: 50 LoC per giorno/persona)

Produttività nel software

Misurare la produttività

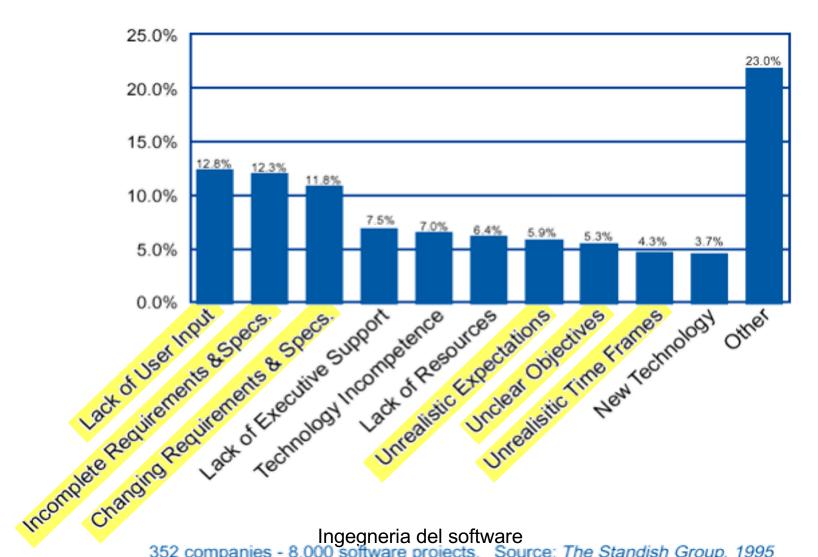



La produttività dell'industria sw è bassa

- Da un'analisi di 13.522 progetti di costruzione sw:
 - 66% di tutti i progetti falliscono (non hanno risultato utile)
 - 82% dei progetti superano i tempi previsti
 - 48% dei progetti producono sistemi senza le funzioni richieste dai clienti
 - 55 miliardi \$ di spreco considerando solo i progetti USA

 Standish Report 2003

Standish CHAOS reports


Agile vs waterfall (CHAOS 2015)

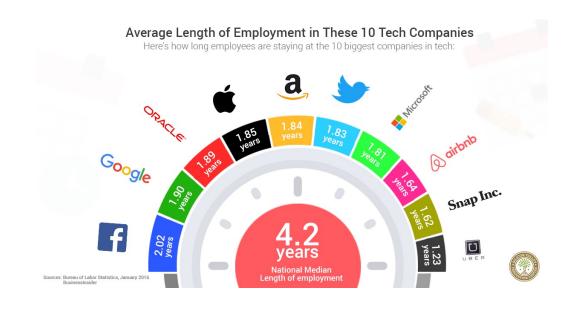
CHAOS RESOLUTION BY AGILE VERSUS WATERFALL

SIZE	METHOD	SUCCESSFUL	CHALLENGED	FAILED
All Size	Agile	39%	52%	9%
Projects	Waterfall	11%	60%	29%
Large Size	Agile	18%	59%	23%
Projects	Waterfall	3%	55%	42%
Medlum Size	Agile	27%	62%	11%
Projects	Walerfall	7%	68%	25%
Small Size	Agile	58%	38%	4%
Projects	Waterfall	44%	45%	11%

The resolution of all software projects from FY2011-2015 within the new CHAOS database, segmented by the agile process and waterfall method. The total number of software projects is over 10,000.

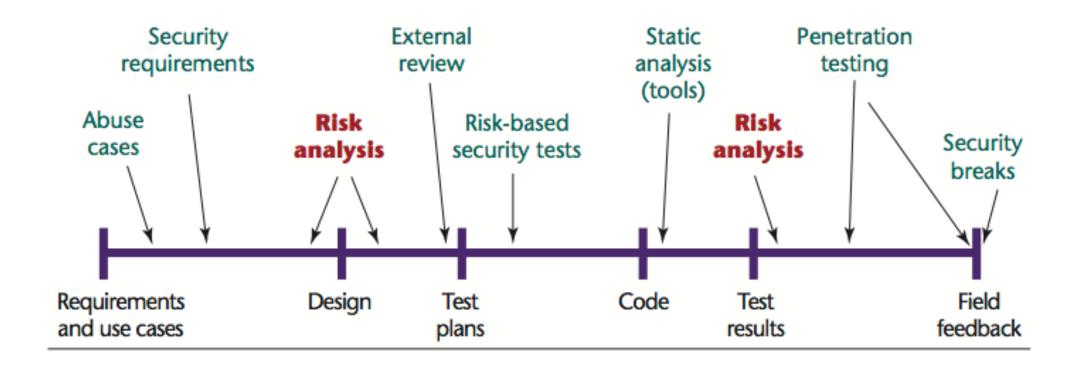
Perché falliscono i progetti sw

Perché falliscono i progetti sw: i rischi


Quali sono i rischi principali di chi sviluppa software?

- Mancanza di feedback da parte del cliente/utente
- Turnover dello staff e in particolare del team di sviluppo
- Realizzare funzioni non richieste
- Ritardi nella consegna
- Superare il budget di progetto
- Realizzare un sistema inusabile
- Realizzare un sistema incapace di funzionare insieme con altri sistemi esistenti

Turnover dello staff


Durate media degli impieghi (2017):

Facebook 2.02 anni
Google 1.90 anni
Oracle 1.89 anni
Apple 1.85 anni
Amazon 1.84 anni
Twitter 1.83 anni
Microsoft 1.81 anni
AirBnb 1.64 anni
Snap Inc. 1.62 anni
Uber: 1.23 anni

Fonte: http://www.businessinsider.com/employee-retention-rate-top-tech-companies-2017-8?IR=T&utm_content=bufferf5cb9&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Analisi dei rischi nel ciclo di vita del software

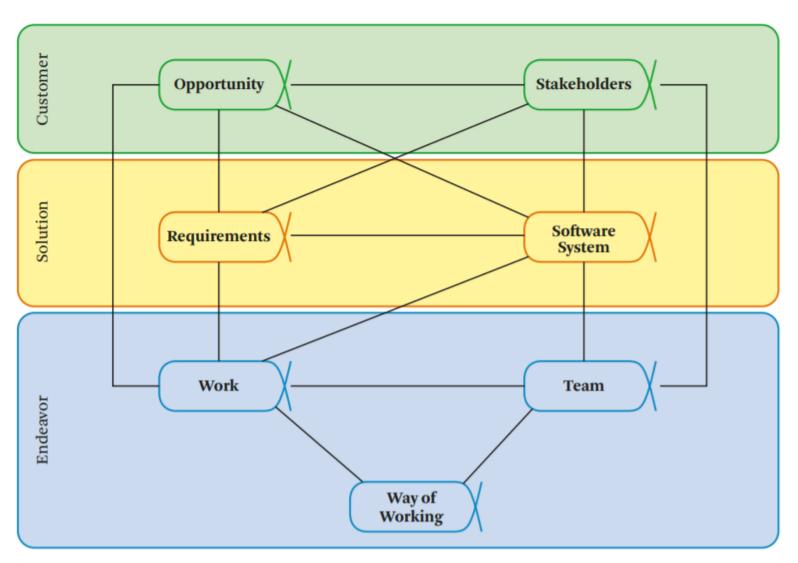
I costi del software

- A causa dell' impatto dei rischi, i costi software spesso dominano i costi di produzione di un sistema; in particolare, i costi sw sono spesso maggiori dei costi dell' hardware sottostante
- È più costoso mantenere il software che svilupparlo: nel caso di sistemi con vita duratura, i costi di manutenzione sono un multiplo dei costi di sviluppo (es.: 3 volte)
- L'ingegneria del software si preoccupa di produrre software con costi "accettabili"

I problemi

I problemi principali che affronta l'IdSw riguardano

- I metodi di analisi e progettazione dei prodotti sw
 - Quale metodo è il più adatto in una data situazione?
- Lo studio del processo di sviluppo del sw
 - Come posso migliorare il mio processo di sviluppo?
- Lo sviluppo degli strumenti di produzione del sw
- Gli aspetti economici dei prodotti e dei processi
 - Quanto costa produrre un certo sistema?
- La standardizzazione di processi e tecnologie


Le competenze richieste nello sviluppo del sw

- Software requirements analisti dei requisiti
- Software design progettisti della struttura
- Software construction scrittura del codice
- Software testing
- Software maintenance evoluzione e manutenzione
- Software configuration management
- Software engineering (project) management
- Software engineering process processo di sviluppo
- Software engineering tools and methods
- Software quality

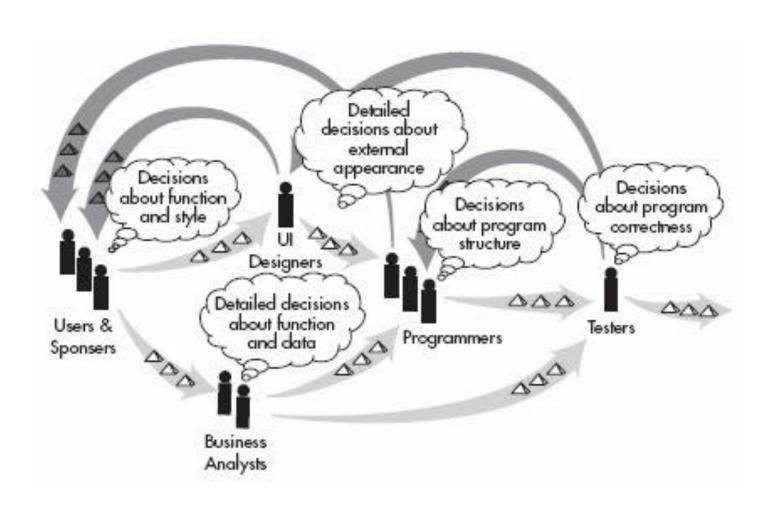
Temi dell'ingegneria del sw

- Il ciclo di vita del software
- Il processo di sviluppo del software; ruoli e strumenti
 - Cattura, specifica, analisi e gestione dei requisiti
 - Progettazione dell'architettura e dei moduli di codice
 - Codifica e debugging del codice
 - Testing (verifica e validazione)
 - Deployment
- Manutenzione del software rilasciato
- Gestione della configurazione
- Project management
- Controlli di qualità del software

Essence: verso una teoria dell'ingegneria del sw

https://essence.ivarjacobson.com/services/what-essence

Parti interessate (stakeholders)


Tipi di stakeholders

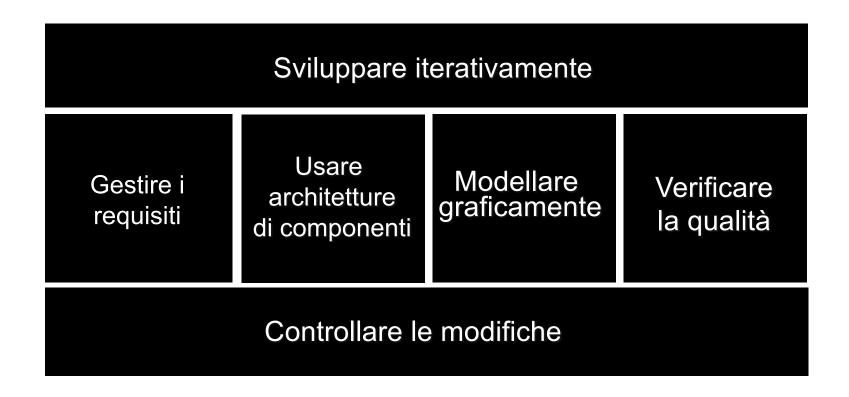
- Progettisti professionisti
- Management
- Personale tecnico
- Decisori
- Utenti
- Finanziatori

— ...

Ad ogni stakeholder corrisponde almeno uno specifico **punto di vista** (view) e varie decisioni

Decisioni degli stakeholders

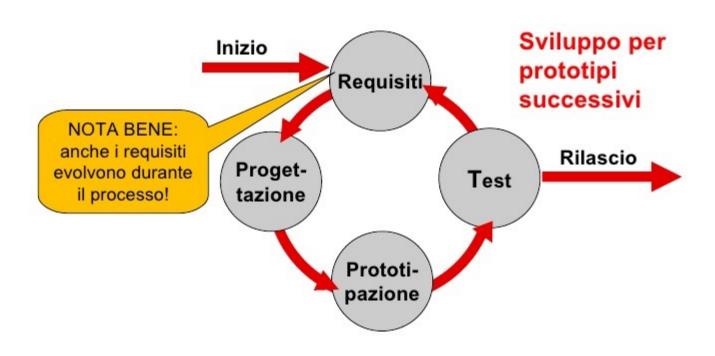
Processi di produzione


- I processi di produzione si creano e poi evolvono
- Prodotti e processi possono essere descritti e valutati da un punto di vista qualitativo
- Processi di produzione a diversi livelli:
 - Ciclo di vita industriale
 - Ciclo di sviluppo: analisi dei requisiti, design, testing
 - Progettazione di un servizio sw (es.: e-commerce)
 - Progettazione di un modulo e del relativo test

Discussione

Come si costruisce un prodotto software? Come si misura?

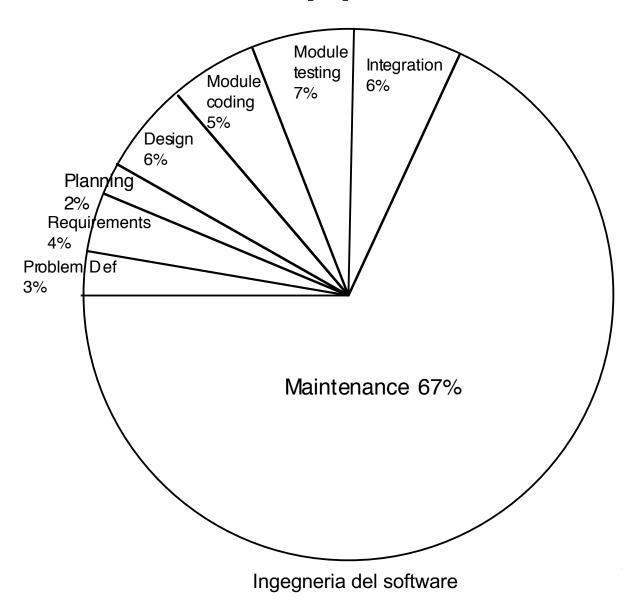
Principi guida dello sviluppo software

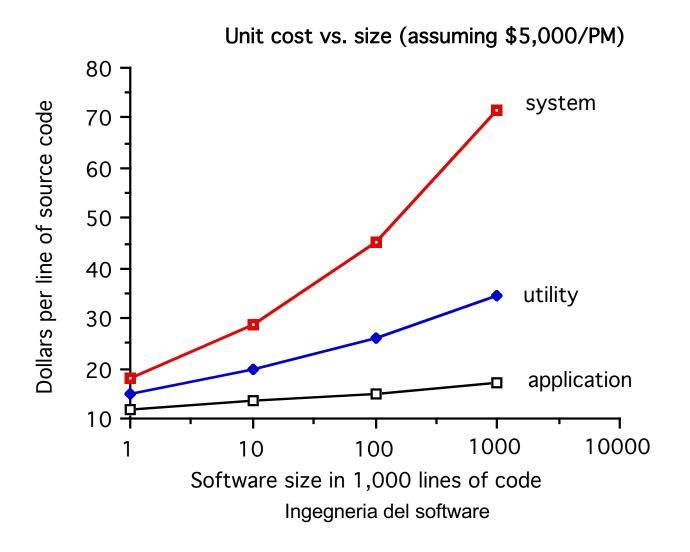


Modelli del software

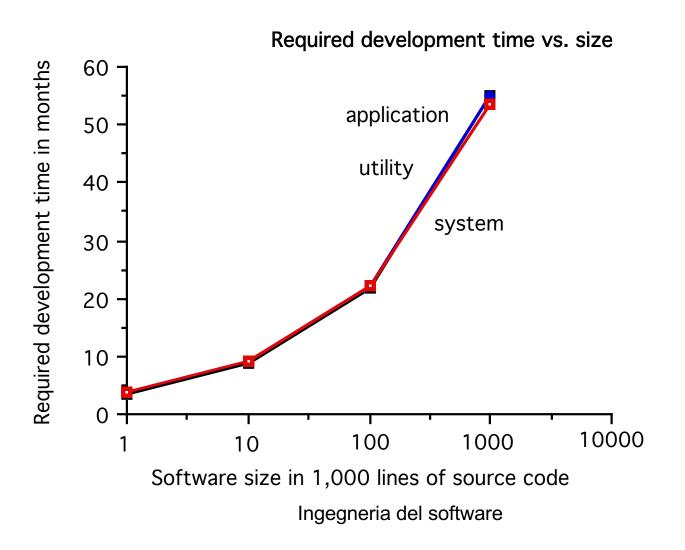
Un **modello** è una *descrizione* che:

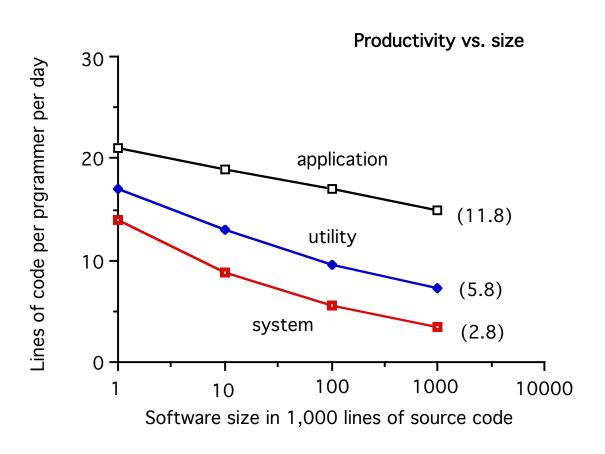
- permette di studiare quali problemi possono capitare durante la costruzione di un sistema
- permette a tutte le parti interessate al sistema di comunicare tra loro usando una terminologia comune


Sviluppare iterativamente


Il ciclo di vita del software

- Requisiti: analisi e specifica
- La progettazione: modellazione dell'architettura e dei singoli componenti
- La codifica ed il debugging
- Il testing e la verifica
- Il deployment (= la messa in opera)
- La manutezione


Costi di Sviluppo (Boehm citato da Schach)


Costo per linea di codice

Durata

Produttività

Fare la cosa giusta

Di tutte le funzionalità di un'applicazione sw:

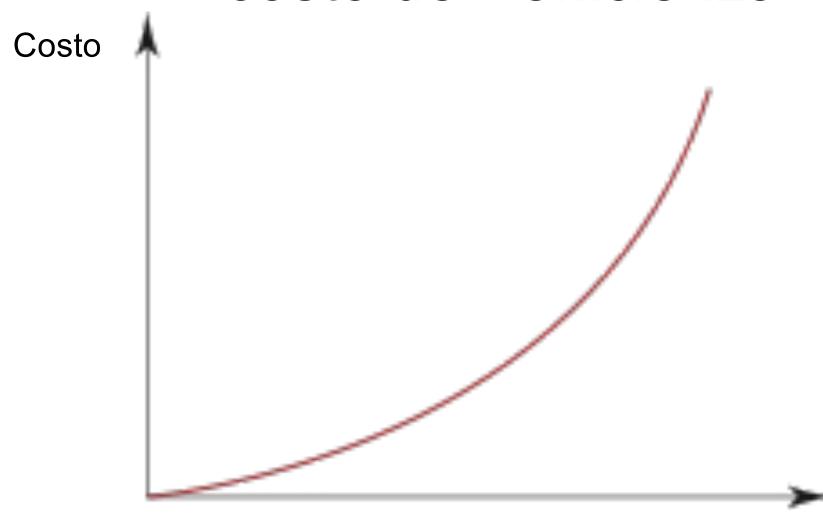
- Il 7% è usato continuamente
- II 13% è usato spesso
- Il 16% è usato saltuariamente
- Il 19% è usato raramente
- II 45% non è mai usato

Fonte: Standish Group, Chaos report 2002

La manutenzione

- Tutti i prodotti hanno bisogno di manutenzione a causa del cambiamento
- I tipi principali di manutenzione:
 - Perfettiva o preventiva (65%): migliorare il prodotto
 - Adattiva (18%): rispondere a modifiche ambientali
 - Correttiva (17%): correggere errori trovati dopo la consegna

Il mondo cambia continuamente La manutenzione è "normale"


Attributi dei prodotti software

- Attributi esterni (visibili all'utente)
 - Costo (e tipo di licenza)
 - Prestazioni
 - Garanzia
- Attributi interni (visibili ai progettisti)
 - Dimensione (size)
 - Sforzo di produzione (effort)
 - Durata della produzione (dall'inizio alla consegna)
 - Mantenibilità
 - Modularità

Bilanciamento degli attributi

- L'importanza relativa degli attributi di prodotto dipende dal prodotto e dall'ambiente in cui verrà usato
- A volte certi attributi sono più importanti
 - Nei sistemi in tempo reale con requisiti di sicurezza, gli attributi chiave sono l'affidabilità e l'efficienza
- Se un attributo dev'essere particolarmente curato e "spinto", i costi di sviluppo tenderanno a crescere esponenzialmente

Il costo dell'efficienza

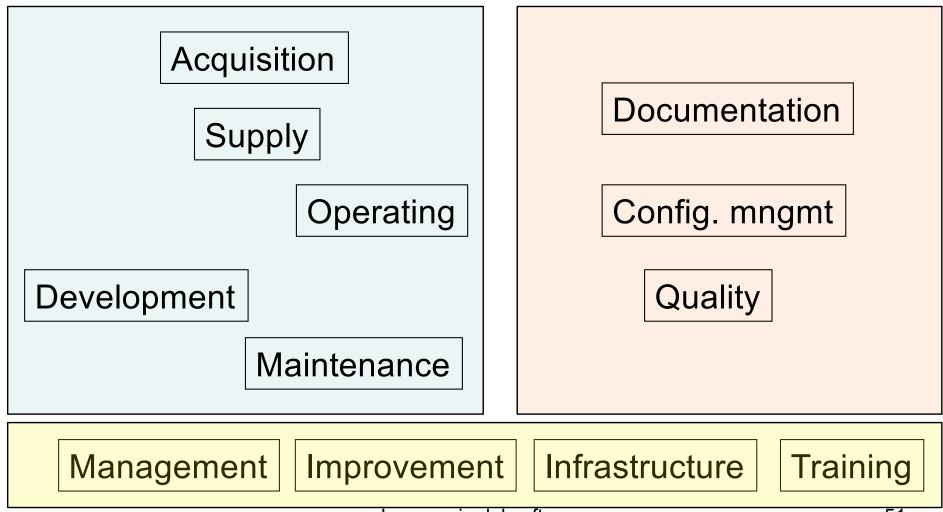
Il costo della qualità

Prodotto	Dimensione del team di sviluppo	Dimensione del team di testing
NT 3.1	200	140
NT 3.5	300	230
NT 3.51	450	325
NT 4.0	800	700
Win2k	1400 Ingegneria del software	1700

Discussione

 Come si organizza un processo di sviluppo del software?

Gli standard per lo sviluppo del software


Standard principali software engineering IEEE

- •IEEE 610 Standard glossary sw engineering
- •IEEE 828 Sw configuration management
- •IEEE 829 Sw test documentation
- •IEEE 830 Recommended practice for sw Requirements Specifications
- •IEEE 1008 Sw unit testing
- •IEEE 1219 Sw maintenance
- •IEEE 1471 Recommended practice for sw Architectural Descriptions
- •IEEE 1517 Sw reuse processes

Processi a ciclo di vita

- Lo standard IEEE12207 definisce le fasi principali dei processi a ciclo di vita:
 - Primarie: Acquisition, supply, development, operation, maintenance
 - Supporto: audit, configuration management, documentation, quality assurance, verification, validation
 - Organizzative: management, infrastructure, improvement, training

Lo standard IEEE12207

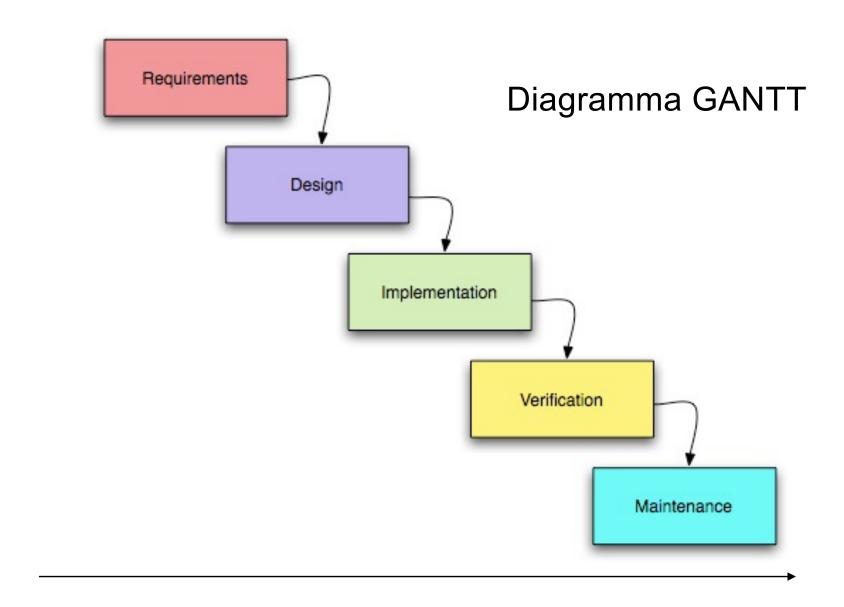
II SWEBOK: sw engineering Body of Knowledge

Knowledge areas SWEBOK 3.0

Table I.1. The 15 SWEBOK KAs				
Software Requirements				
Software Design				
Software Construction				
Software Testing				
Software Maintenance				
Software Configuration Management				
Software Engineering Management				
Software Engineering Process				
Software Engineering Models and Methods				
Software Quality				
Software Engineering Professional Practice				
Software Engineering Economics				
Computing Foundations				
Mathematical Foundations				
Engineering Foundations wledge-swebok-v3				

https://dokumen.tips/reader/f/guide-to-the-software-engineering-body-of-know

Ciclo di vita di un rilascio sw


- Un rilascio software
 (software release) è una
 versione di un prodotto che
 viene immessa sul mercato
- Il ciclo di vita della release è l'insieme delle fasi del suo sviluppo e della sua vita operativa

Testing and development period Pre-alpha aka development releases nightly builds Alpha Beta Release Candidate gamma delta RTM Release to Manufacturing aka Release to Marketing GA General Availability Production or live release Gold 53 Release period

Ingegneria del software

Le attività di sviluppo

- Le attività di sviluppo del software differiscono in funzione dell'organizzazione che sviluppa e del sw da produrre, ma di solito includono:
 - Specifica delle funzionalità richieste (requisiti)
 - Progetto della struttura modulare e delle interfacce
 - Implementazione: codifica moduli e integrazione
 - Verifica e validazione
 - Evoluzione e manutenzione
- Per poterle gestire vanno esplicitamente modellate

Il processo di sviluppo del sw

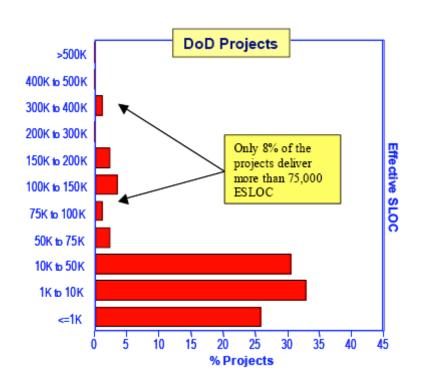
 Processo software: insieme dei ruoli, delle attività e dei documenti necessari per creare un sistema software

Esempi: ruoli attività documenti

- Esempi di ruoli: stakeholder, progettista, sviluppatore, tester, manutentore, ecc.
- Esempi di attività: programmare, testare, fare una riunione, fare una demo, documentare
- Esempi di documenti: codice sorgente, codice eseguibile, specifica, commenti, risultati di test, ecc.

Le attività di sviluppo nel mondo

 Cusumano e altri nel 2003 hanno analizzato 104 progetti software in quattro regioni


	India	Japan	US	Europe	Total
Practice / No. of Projects	24	27	31	22	104
Architectural Specification	83.3%	70.4%	54.8%	72.7%	69.2%
Functional Specification	95.8%	92.6%	74.2%	81.8%	85.6%
Detailed Design	100.0%	85.2%	32.3%	68.2%	69.2%
Code Generation	62.5%	40.7%	51.6%	54.5%	51.9%
Design Review	100.0%	100.0%	77.4%	77.3%	88.5%
Code Review	95.8%	74.1%	71.0%	81.8%	79.8%
Subcycles	79.2%	44.4%	54.8%	86.4%	64.4%
Beta Testing	66.7%	66.7%	77.4%	81.8%	73.1%
Pair Testing	54.2%	44.4%	35.5%	31.8%	41.3%
Pair Programming	58.3%	22.2%	35.5%	27.2%	35.3%
Daily Builds					
At the Start	16.7%	22.2%	35.5%	9.1%	22.1%
In the Build	12.5%	25.9%	29.0%	27.3%	24.0%
At the End	29.2%	37.0%	35.5%	40.9%	35.6%
Regression Testing	91.7%	96.3%	71.0%	77.3%	83.7%

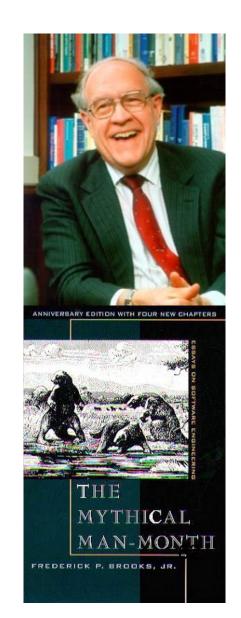

La produttività nel mondo

 Sugli stessi 104 progetti Cusumano raccolse i seguenti dati di produttività e qualità:

	India	Japan	US	Europe	Total
No. of Projects	24	27	31	22	104
LOC/programmer month	209	469	270	436	374
Defects/KLOC (12 mon.	0.263	0.020	0.400	0.225	0.150
after delivery)					

Characteristics of Projects Completed in 12 Months

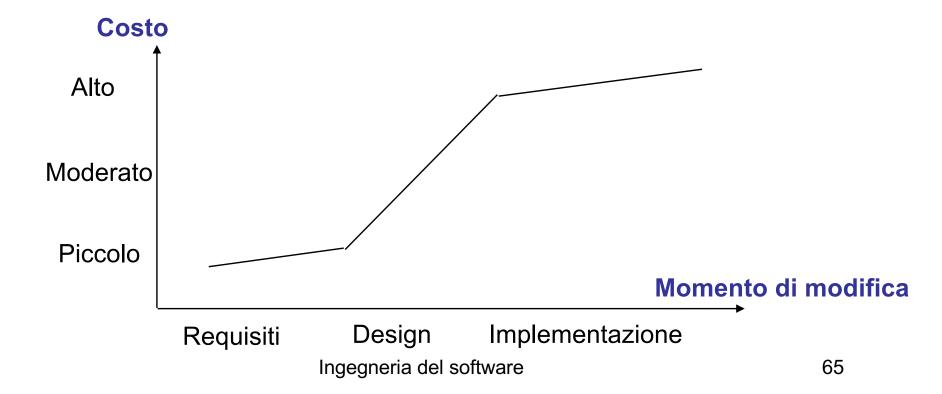
- Approximately 10% of the projects built more than 75,000 SLOC in 12 months
- Average staff required for projects less than 75,000 ESLOC is approximately 5-10
- Staff required for projects exceeding 75,000 ESLOC is approximately 20-100, depending on size

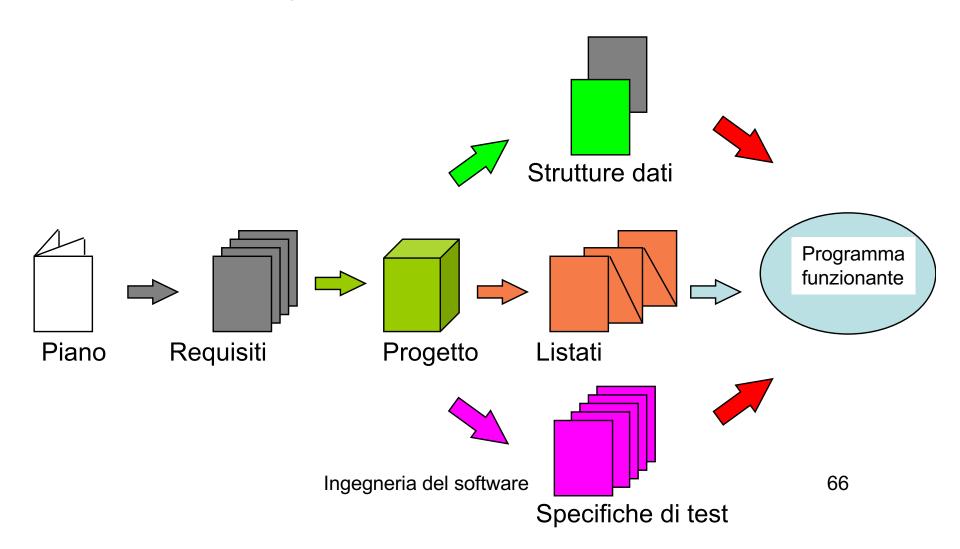

Figure 1. Frequency Distribution of nemgegnerical det softwarere developed with a 12-month time of period for DoD and private industry.

Miti e leggende dell'ingegneria del sw

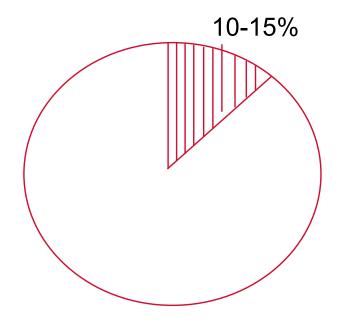
- Il "silver bullet" è il proiettile d'argento che uccide i lupi mannari
- "Trovare un silver bullet" è sinonimo di "trovare una soluzione finale" ad un problema
- Costruire software è difficile: qual è il silver bullet dell'ingegneria del sw?

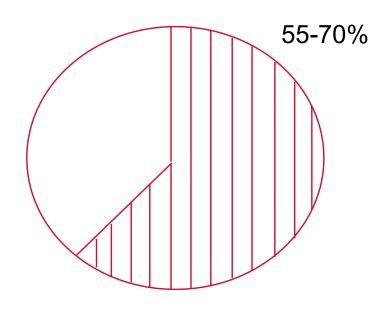
Fred Brooks


- Fred Brooks, premio Turing 1999, fu progettista del sistema IBM 360
- Dalle sue esperienze trasse spunto per scrivere il libro "The Mytical Man Month" e l'articolo "No silver bullet"


- Se il progetto ritarda, possiamo aggiungere programmatori e rispettare la consegna
 - Legge di Brooks: "Aggiungere personale ad un progetto in ritardo lo fa ritardare ancor di più"

- Per cominciare a scrivere un programma, basta un' idea generica dei suoi obiettivi - ai dettagli si pensa dopo
 - La cattiva definizione della specifica dei requisiti è la maggior causa di fallimenti progettuali


 Se i requisiti di un progetto cambiano, non è un problema tenerne conto perché il software è flessibile


• L' unico prodotto (deliverable) di un progetto di successo è un programma funzionante

 Se il software "funziona", la manutenzione è minima e si può gestire errore per errore, quando capita di trovarne uno

Costi di manutenzione preventivati

Costi di manutenzione reali

Sommario

- Produrre software è costoso
- La produttività dell' industria del sw è bassa
 - Le consegne sono spesso in ritardo
 - I costi software spesso sforano il budget
 - La documentazione è inadeguata
 - Il software è spesso difficile da usare
- Soluzione: migliorare il processo software

Domande di autotest

- Quali sono le fasi tipiche del ciclo di vita di un sistema software? E quelle dello sviluppo?
- Qual è la fase solitamente più costosa?
- In quale fase dello sviluppo è più pericoloso commettere un errore?
- In quale fase dello sviluppo è più semplice correggere un errore?
- Cos'è un processo di sviluppo del software?
- Quali sono i tipici documenti prodotti durante un processo software?
- Cos'è la legge di Brooks?

Lettura consigliata

F.Brooks, No Silver Bullets, *IEEE Computer*, 20:4, 1987

Riferimenti

- Software Engineering Body of Knowledge, IEEE, 2014
- F.Brooks, *The Mythical Man Month*, AddisonWesley, 1995
- M.Cusumano, The Business of Software: What Every Manager, Programmer, and Entrepreneur Must Know in Good Times and Bad, Free Press, 2004
- IEEE/EIA 12207.0, "Standard for Information Technology
 - Software Life Cycle Processes"

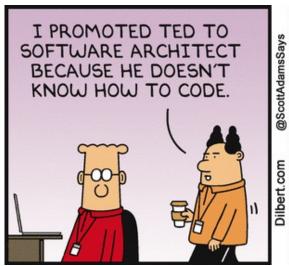
Principali pubblicazioni scientifiche

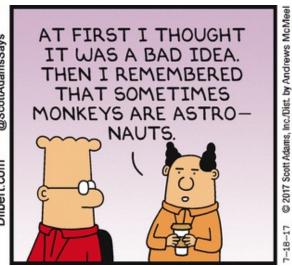
- IEEE Transactions on Software Engineering
- ACM Transactions on Software Engineering and Methodology
- Int. Conference on Software Engineering

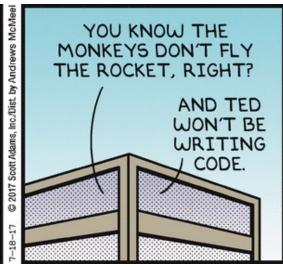
Pubblicazioni di ricerca sul sw engineering

Riviste:

- IEEE Transactions on sw engineering
- ACM Transactions on software engineering and methodology
- IEEE Software
- Empirical Software Engineering
- Automated Software Engineering
- Journal of Object Technology
- ACM SIGSOFT


Conferenze:


- International Conference of Software Engineering
- Fundamentals of Software engineering
- SPLASH
- International Conference on Software and System Process


Siti utili

- www.sigsoft.org/seworld
- www.computer.org/web/swebok
- https://dokumen.tips/reader/f/guide-to-the-softwareengineering-body-of-knowledge-swebok-v3
- swebokwiki.org/Main Page
- essence.ivarjacobson.com/services/what-essence

Domande?

