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Software Engineering

Module 2

Design Patterns
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Overview 

• Scenario Example

• Patterns (Gamma Patterns) Covered:
– Creational: Builder, Abstract Factory, Factory Method, 

Prototype, Singleton

– Structural: Decorator, Proxy

– Behavioural: Visitor, Strategy, Chain of 
Responsibility, Mediator

• Patterns not Covered:
– Structural: Facade, Flyweight

– Behavioral: Command, Interpreter, Iterator, Memento, 
State, Template Method
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Design Patterns

“Descriptions of communicating 

objects and  classes that are 

customized to solve a general design 

problem in a particular context.”
-- E. Gamma
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Definition of a Design Pattern

“A Pattern describes a problem which 

occurs over and over again in our 

environment, and then describes the core of 

the solution to that problem, in such a way 

that you can use this solution a million 

times over, without ever doing it the same 

way twice” (Alexander et. al., 1977)
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Looking 

for 

Patterns
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Same 

Pattern 

in a 

Similar 

Tower
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Same 

Pattern in 

a Slightly 

Different 

Tower
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Same Pattern in a

Completely Different Tower
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Design Patterns in Development

• We can translate the concept of design 

patterns to software development

• We have to define:

– The “bricks”

– The “configurations of the bricks”

• Object-Orientation provides a “natural 

way” to express design patterns
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OO Design Patterns

• Design objects are our “bricks”

• Informally, a design pattern is a particular 

“configuration” of design objects

– … that is, a set of objects and their mutual 

relations (inheritance, composition, aggregation, 

association, creation, …)

• OO design patterns have excellent potentials to 

be the “right” components for reuse
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The Gamma Approach

• Gamma distinguishes 3 kinds of patterns: 

– Creational: patterns dealing with object 

creation

– Structural: patterns dealing with the 

composition of classes and objects

– Behavioral: patterns dealing with objects 

interactions and sharing of responsibilities
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The “Usual” Example

• We want to design an accounting system

for a little township

• There is an existing budget composed by 

several accounts and the system should 

be able to get the aggregate information 

from these accounts

• We focus on creating and analysing the 

structure, not on modifying it
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Design Requirements

• The budget must be unique.

• Several accounts can be added and 

removed from the budget; each account 

can either by monolithic or formed by 

other accounts.

• It must be possible to scan through all 

the external accounts inside the budget.
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Uniqueness of the Budget

Budget

 static instance()

 BudgetOperation()

 GetBudgetData()

 static uniqueBudget

 static noBudgetCreated

 budgetData

 return uniqueBudget
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Java Skeleton

public class Budget {

public static Budget instance() {

if (uniqueBudget == null)

uniqueBudget=new Budget();

return uniqueBudget;

}

... 

private Budget() { ... }

... 

private static Budget uniqueBudget = null;

...

}

... 

Budget townshipBudget = Budget.instance();

// Budget wrongBudget = new Budget(); WRONG!!!
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The Singleton Pattern

Singleton

 static instance()

 SingletonOperation()

 GetSingletonData()

 static uniqueInstance

 singletonData

 return uniqueInstance
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Structure of the Accounts

Account

GlobalOperation()

AtomicOperation()

Add(Account)

Remove(Account)

CompositeAccount

GlobalOperation()

AtomicOperation()

Add(Account)

Remove(Account)

SimpleAccount

forall g in children

g.GlobalOperation();

Budget

children

GlobalOperation()

AtomicOperation()

Operation()

Operation();

Operation();

Find the right child r

r.AtomicOperation();

*
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The Composite Pattern

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf

Operation() forall g in children

g.Operation();

Client

Composite

Operation()

Add(Component)

Remove(Component)

GetChild(int)

children

*
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Scanning through the accounts

Iterator

 First()

 Next()

 IsDone()

CurrentItem()

AccountsIterator

 return new AccountsIterator(this);

ListOfAccounts

 CreateIterator()

Budget
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The Iterator Pattern

Iterator

 First()

 Next()

 IsDone()

CurrentItem()

Aggregate

 CreateIterator()

ConcreteIterator

 return new ConcreteIterator(this);

ConcreteAggregate

 CreateIterator()

Client
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Design Patterns (cont’d)

• A pattern has four elements:

The pattern name. This is used to describe a 
problem, its solutions and consequences in one or 
two words.

The problem. This element describes a particular 
design problem and its context.

The solution. This describes the design elements, 
their relationships, their responsibilities, and 
collaborations.

The consequences. These elements are the results 
and trade-offs of applying design patterns.
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Design Patterns (cont’d)

• Types of Design Patterns:

– Creational Patterns

– Structural Patterns

– Behavioral Patterns

Giancarlo Succi
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Creational Patterns

• These patterns are related to object creation. 

• They abstract the object instantiation.

• They encapsulate the knowledge about the 

concrete classes and hide the information 

about object's creation. 

• Five creational patterns are Abstract Factory, 

Builder, Factory Method, Prototype, and 

Singleton
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Builder Pattern

• This pattern is used to create a complex object 
while separating its construction process from its 
representation

• The building process is delegated to a director of 
object building. 

• The director keeps a list of complex objects to be 
created and directs the building process to the 
proper component builder.

• Lets us have different implementation/interfaces 
of an object’s parts

• There will be finer control over the construction 
process
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Class Diagram for Builder pattern

Director

 build()

Component

Builder

build()

Component nProduct

Component 1 Component n…

Component

Builder n

build()

Component

Builder 1

build()
…

buildsuses

assemblesFor all 

components 

needed for 

the product, 

build with 

the abstract 

builder.

*

*
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Abstract Factory

• Provides an interface for creating families of 
related or dependent objects without specifying 
their concrete classes. 

• Can be used when there is a need to have 
multiple families of products, to hide product 
implementations and present only interfaces. 

• Supports consistency among products and 
makes exchanging product families easy.  

• It is very difficult to support new kinds of 
products in each family.

Giancarlo Succi
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Abstract Factory Pattern

Abstract

Component n

Family A

Component n
…

Family Z

Component n

Abstract

Component 1

Family A

Component 1 …

Family Z

Component 1

Product Family A

Factory

createComponent1()

:

createComponentn()

Family Z

Factory

createComponent1()

:

createComponentn()

Abstract

Factory

createComponent1()

:

createComponentn()

:

…

There are families (A-Z) 

each with its own set of 

components (1-n)
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AbstractFactory f;

AbstractComponent1 c1;

AbstractComponent2 c2;

// We want component 1 from Family A.

f = new FamilyAFactory();

c1 = f.createComponent1();

// We want component 2 from Family C.

f = new FamilyCFactory();

c2 = f.createComponent2();

Using Abstract Factory
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Factory Method 

• Used to create an object when the information 
needed to build it is available only at run time. 

• Can be used when a class cannot anticipate the 
class of the objects it must create. 

• In this pattern we can create an interface to 
create an object and let the subclasses decide 
which class to instantiate. 

• This pattern connects parallel class hierarchies. 
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Concrete

Product

Product Abstract

Creator

FactoryMethod()

Concrete

Creator 1

FactoryMethod()

Concrete

Creator n

FactoryMethod()

…

Product x = ConcreteCreator1.FactoryMethod();

Product y = ConcreteCreator2.FactoryMethod();

Class Diagram for Factory Method

Giancarlo Succi
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Prototype Pattern 

• Lets user specify the kinds of objects to 
create using a prototypical instance, and 
to create new objects by copying the 
prototype. 

• Can be used to avoid the formation of 
parallel class hierarchy using Factory 
Method pattern. 

• Allows user to add and remove objects at 
runtime.

• May reduce the number of subclasses



32

Class Diagram for Prototype Pattern

Client

 operation()

<< abstract >>

Prototype

Clone()

Concrete

Prototype 1

 Clone()

Concrete

Prototype n

 Clone()

…

p = Prototype.Clone();

Return copy of self; Return copy of self;
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class Singleton {

private Singleton() {}

static Singleton theInstance = null;

static Singleton getInstance() {

if (theInstance == null)

theInstance = new Singleton();

return theInstance;

}

}

Singleton Pattern

• Used to create only one instance of a class.

• Creating sole instance:
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Structural Patterns

• These patterns are concerned with how structures are 

formed by the composition of classes and objects. 

• Two types of structural patterns:

– Structural class pattern which uses inheritance to 

compose interfaces or implementations. 

– Structural object pattern, which describes the ways to 

compose objects to realize new functionality.  

• Structural Patterns: Adapter, Bridge, Composite , 

Decorator, Facade, Flyweight, Proxy.

Giancarlo Succi
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Adapter and Bridge

• The adapter and bridge patterns are used when 

we need to separate the “interface” of a class 

from its actual implementation

• The goal of the adapter is to resolve “naming” 

mismatches

• The goal of the bridge is to hide the 

implementation from the “interface”

• Given the presence of “interfaces” in Java, the 

bridge is less critical at the coding level

Giancarlo Succi
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Adapter (with multiple inheritance)

Target

 Request()

Adapter

 Request()  SpecificRequest()

Client Adaptee

 SpecificRequest()

(protected or private)

Giancarlo Succi
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Adapter (without multiple inheritance)

Target

 Request()

Adapter

 Request()  adaptee->SpecificRequest()

Client Adaptee

 SpecificRequest()

adaptee

Giancarlo Succi
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Bridge

Abstraction

 Operation()

Implementor

 OperationImp()

RefinedAbstraction

 imp->OperationImp()

Client

ConcreteImplementationA

 OperationImp()

imp

ConcreteImplementationB

 OperationImp()

Giancarlo Succi
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Decorator Pattern

• Similar to composite pattern except that 

features (which are also components) are 

added one at a time to a single component. 

• Attaches additional responsibilities to an 

object dynamically.  

• A decorator and its component are not 

identical. 

• It is a flexible alternative to subclassing for 

extended functionality. 

Giancarlo Succi
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Class Diagram for Decorator Pattern

<< abstract >>

Component

Concrete

Component

Decorator

Concrete

Decorator 1 …
Concrete

Decorator n

Giancarlo Succi
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Example of Decorator Pattern

<< abstract >>

Window

Elementary

Window

Titled

Window …
Bordered

Window

Decorated

Window

Window w;

w = new ElementaryWindow();

w = new TitledWindow(w, 

“Title”);

w = new BorderedWindow(w);

Giancarlo Succi
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Proxy Pattern

• Similar to bridge pattern. 

• Actual implementation is hidden in the 

real object and a proxy object is used for 

presentation 

• Proxies can be used for remote access, 

virtual access, and for protection.

• The proxy pattern can occur either at the 

class level or at the object level.

Giancarlo Succi
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<< abstract >>

Entity

operation()

Real Entity

operation()

Proxy

 operation()

refEntity.operation();

refEntity

Real Entity Object

operation()

Proxy Object

 operation()
refEntity

Class Level

Object Level

Class Diagram for the Proxy

Giancarlo Succi
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Behavioral Pattern

• These patterns are concerned with algorithms
and assignment of responsibilities between 
objects. 

• They describe the patterns of objects 
interaction, and characterize complex control 
flow that is difficult to follow at runtime. 

• Behavioral Patterns: Visitor, Strategy, Chain 
of Responsibility, Mediator, State, Command, 
Interpreter, Iterator, Memento, Observer, 
Template Method

Giancarlo Succi
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Visitor Pattern 

• Visitor is a class that defines an operation 

to be performed on the elements of an 

object structure.

• Visitor lets us to have new operation 

without changing the classes of elements 

on which it operates. 

• It is the visited object that decides what 

tasks to be performed. 

• It may force a break in encapsulation.
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Element

 accept(Visitor v)

Leaf 1

 accept

(Visitor v)

Visitor

visitX()

visitY()

Visitor 1

visitX()

visitY()

Visitor n

visitX()

visitY()

…

Leaf 2

 accept

(Visitor v)

Composite

 accept

(Visitor v)

V.visitX(this);

V.visitY(this);

For each contained 

object o: 

o.accept(v);

Class Diagram for the Visitor
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Strategy Pattern

• Involves the concept of parameterizing objects 
with multiple behaviors at run time. 

• Useful especially when we need many related 
classes that differ only in their behavior. 

• Strategies eliminates the need for conditional
statements by defining a family of algorithms, 
encapsulating each algorithm which are 
interchangeable.

• Allows to have choice of implementation and 
reduced number of subclasses. 

• There would be an increased number of objects. 
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Entity

 f()

strategy.action();

<<Abstract>>

Strategy

action()

Strategy 1

action()

Strategy n

action()
…

strategy

Class Diagram for the Strategy

Giancarlo Succi



49

Chain of Responsibility Pattern

• Can be used when we have a request to be 
fulfilled by one of many objects, but we do not 
know in advance which one is going to handle 
the request.

• We chain the receiving objects and pass the 
request along the chain of objects until an 
object handles it. 

• Avoid the coupling of the sender of a request 
to its receiver. 

• The request's receipt is not guaranteed. 

Giancarlo Succi
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Class Diagram for the Chain of 

Responsibility

Client

 request()

myHandler.handleRequest();

<<Abstract>>

Handler

handleRequest(r)

Handler 1

handleRequest(r) …
Handler 1

handleRequest(r)

successor

If (I want to serve r)

serve(r);

else if (successor != null)

successor.handleRequest(r);

else

throw new RequestNotSatisfiedException();

Giancarlo Succi
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Mediator Pattern

• Used when complex interactions of objects exists 

and we do not want to include the interaction in 

the objects

• The concept of mediator is similar to a 

blackboard used by many objects to share 

knowledge and centralize control.

• The Mediator has a fixed set of primitives and it 

is required that each participant need to know the 

primitives to participate in the discussion. 

Giancarlo Succi



52

Mediator

Mediator1

f();

y();

z();

…..

<<Abstract>>

MediatorN

OBJ1

OBJ2

OBJ3

Class Diagram for the Mediator

Giancarlo Succi
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Proposed Exercise

• Imagine that you are the designer for a 

Windows-like operating system.

• Think of features of the operating system 

that will benefit from the use of design 

patterns.

Giancarlo Succi
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Other proposed exercises

• Find all the possible (… well … at least 

one … ) patterns present in the O/S that 

you currently use
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