
1

Software Engineering

Module 2

Design Patterns

Giancarlo Succi

2

Overview

• Scenario Example

• Patterns (Gamma Patterns) Covered:
– Creational: Builder, Abstract Factory, Factory Method,

Prototype, Singleton

– Structural: Decorator, Proxy

– Behavioural: Visitor, Strategy, Chain of
Responsibility, Mediator

• Patterns not Covered:
– Structural: Facade, Flyweight

– Behavioral: Command, Interpreter, Iterator, Memento,
State, Template Method

3

Design Patterns

“Descriptions of communicating

objects and classes that are

customized to solve a general design

problem in a particular context.”
-- E. Gamma

Giancarlo Succi

4

Definition of a Design Pattern

“A Pattern describes a problem which

occurs over and over again in our

environment, and then describes the core of

the solution to that problem, in such a way

that you can use this solution a million

times over, without ever doing it the same

way twice” (Alexander et. al., 1977)

Giancarlo Succi

5

Looking

for

Patterns

6

Same

Pattern

in a

Similar

Tower

7

Same

Pattern in

a Slightly

Different

Tower

8

Same Pattern in a

Completely Different Tower

9

Design Patterns in Development

• We can translate the concept of design

patterns to software development

• We have to define:

– The “bricks”

– The “configurations of the bricks”

• Object-Orientation provides a “natural

way” to express design patterns

Giancarlo Succi

10

OO Design Patterns

• Design objects are our “bricks”

• Informally, a design pattern is a particular

“configuration” of design objects

– … that is, a set of objects and their mutual

relations (inheritance, composition, aggregation,

association, creation, …)

• OO design patterns have excellent potentials to

be the “right” components for reuse

Giancarlo Succi

11

The Gamma Approach

• Gamma distinguishes 3 kinds of patterns:

– Creational: patterns dealing with object

creation

– Structural: patterns dealing with the

composition of classes and objects

– Behavioral: patterns dealing with objects

interactions and sharing of responsibilities

Giancarlo Succi

12

The “Usual” Example

• We want to design an accounting system

for a little township

• There is an existing budget composed by

several accounts and the system should

be able to get the aggregate information

from these accounts

• We focus on creating and analysing the

structure, not on modifying it

Giancarlo Succi

13

Design Requirements

• The budget must be unique.

• Several accounts can be added and

removed from the budget; each account

can either by monolithic or formed by

other accounts.

• It must be possible to scan through all

the external accounts inside the budget.

Giancarlo Succi

14

Uniqueness of the Budget

Budget

 static instance()

 BudgetOperation()

 GetBudgetData()

 static uniqueBudget

 static noBudgetCreated

 budgetData

 return uniqueBudget

Giancarlo Succi

15

Java Skeleton

public class Budget {

public static Budget instance() {

if (uniqueBudget == null)

uniqueBudget=new Budget();

return uniqueBudget;

}

...

private Budget() { ... }

...

private static Budget uniqueBudget = null;

...

}

...

Budget townshipBudget = Budget.instance();

// Budget wrongBudget = new Budget(); WRONG!!!

Giancarlo Succi

16

The Singleton Pattern

Singleton

 static instance()

 SingletonOperation()

 GetSingletonData()

 static uniqueInstance

 singletonData

 return uniqueInstance

Giancarlo Succi

17

Structure of the Accounts

Account

GlobalOperation()

AtomicOperation()

Add(Account)

Remove(Account)

CompositeAccount

GlobalOperation()

AtomicOperation()

Add(Account)

Remove(Account)

SimpleAccount

forall g in children

g.GlobalOperation();

Budget

children

GlobalOperation()

AtomicOperation()

Operation()

Operation();

Operation();

Find the right child r

r.AtomicOperation();

*

Giancarlo Succi

18

The Composite Pattern

Component

Operation()

Add(Component)

Remove(Component)

GetChild(int)

Leaf

Operation() forall g in children

g.Operation();

Client

Composite

Operation()

Add(Component)

Remove(Component)

GetChild(int)

children

*

Giancarlo Succi

19

Scanning through the accounts

Iterator

 First()

 Next()

 IsDone()

CurrentItem()

AccountsIterator

 return new AccountsIterator(this);

ListOfAccounts

 CreateIterator()

Budget

Giancarlo Succi

20

The Iterator Pattern

Iterator

 First()

 Next()

 IsDone()

CurrentItem()

Aggregate

 CreateIterator()

ConcreteIterator

 return new ConcreteIterator(this);

ConcreteAggregate

 CreateIterator()

Client

Giancarlo Succi

21

Design Patterns (cont’d)

• A pattern has four elements:

The pattern name. This is used to describe a
problem, its solutions and consequences in one or
two words.

The problem. This element describes a particular
design problem and its context.

The solution. This describes the design elements,
their relationships, their responsibilities, and
collaborations.

The consequences. These elements are the results
and trade-offs of applying design patterns.

Giancarlo Succi

22

Design Patterns (cont’d)

• Types of Design Patterns:

– Creational Patterns

– Structural Patterns

– Behavioral Patterns

Giancarlo Succi

23

Creational Patterns

• These patterns are related to object creation.

• They abstract the object instantiation.

• They encapsulate the knowledge about the

concrete classes and hide the information

about object's creation.

• Five creational patterns are Abstract Factory,

Builder, Factory Method, Prototype, and

Singleton

24

Builder Pattern

• This pattern is used to create a complex object
while separating its construction process from its
representation

• The building process is delegated to a director of
object building.

• The director keeps a list of complex objects to be
created and directs the building process to the
proper component builder.

• Lets us have different implementation/interfaces
of an object’s parts

• There will be finer control over the construction
process

25

Class Diagram for Builder pattern

Director

 build()

Component

Builder

build()

Component nProduct

Component 1 Component n…

Component

Builder n

build()

Component

Builder 1

build()
…

buildsuses

assemblesFor all

components

needed for

the product,

build with

the abstract

builder.

*

*

Giancarlo Succi

26

Abstract Factory

• Provides an interface for creating families of
related or dependent objects without specifying
their concrete classes.

• Can be used when there is a need to have
multiple families of products, to hide product
implementations and present only interfaces.

• Supports consistency among products and
makes exchanging product families easy.

• It is very difficult to support new kinds of
products in each family.

Giancarlo Succi

27

Abstract Factory Pattern

Abstract

Component n

Family A

Component n
…

Family Z

Component n

Abstract

Component 1

Family A

Component 1 …

Family Z

Component 1

Product Family A

Factory

createComponent1()

:

createComponentn()

Family Z

Factory

createComponent1()

:

createComponentn()

Abstract

Factory

createComponent1()

:

createComponentn()

:

…

There are families (A-Z)

each with its own set of

components (1-n)

28

AbstractFactory f;

AbstractComponent1 c1;

AbstractComponent2 c2;

// We want component 1 from Family A.

f = new FamilyAFactory();

c1 = f.createComponent1();

// We want component 2 from Family C.

f = new FamilyCFactory();

c2 = f.createComponent2();

Using Abstract Factory

29

Factory Method

• Used to create an object when the information
needed to build it is available only at run time.

• Can be used when a class cannot anticipate the
class of the objects it must create.

• In this pattern we can create an interface to
create an object and let the subclasses decide
which class to instantiate.

• This pattern connects parallel class hierarchies.

Giancarlo Succi

30

Concrete

Product

Product Abstract

Creator

FactoryMethod()

Concrete

Creator 1

FactoryMethod()

Concrete

Creator n

FactoryMethod()

…

Product x = ConcreteCreator1.FactoryMethod();

Product y = ConcreteCreator2.FactoryMethod();

Class Diagram for Factory Method

Giancarlo Succi

31

Prototype Pattern

• Lets user specify the kinds of objects to
create using a prototypical instance, and
to create new objects by copying the
prototype.

• Can be used to avoid the formation of
parallel class hierarchy using Factory
Method pattern.

• Allows user to add and remove objects at
runtime.

• May reduce the number of subclasses

32

Class Diagram for Prototype Pattern

Client

 operation()

<< abstract >>

Prototype

Clone()

Concrete

Prototype 1

 Clone()

Concrete

Prototype n

 Clone()

…

p = Prototype.Clone();

Return copy of self; Return copy of self;

Giancarlo Succi

33

class Singleton {

private Singleton() {}

static Singleton theInstance = null;

static Singleton getInstance() {

if (theInstance == null)

theInstance = new Singleton();

return theInstance;

}

}

Singleton Pattern

• Used to create only one instance of a class.

• Creating sole instance:

34

Structural Patterns

• These patterns are concerned with how structures are

formed by the composition of classes and objects.

• Two types of structural patterns:

– Structural class pattern which uses inheritance to

compose interfaces or implementations.

– Structural object pattern, which describes the ways to

compose objects to realize new functionality.

• Structural Patterns: Adapter, Bridge, Composite ,

Decorator, Facade, Flyweight, Proxy.

Giancarlo Succi

35

Adapter and Bridge

• The adapter and bridge patterns are used when

we need to separate the “interface” of a class

from its actual implementation

• The goal of the adapter is to resolve “naming”

mismatches

• The goal of the bridge is to hide the

implementation from the “interface”

• Given the presence of “interfaces” in Java, the

bridge is less critical at the coding level

Giancarlo Succi

36

Adapter (with multiple inheritance)

Target

 Request()

Adapter

 Request() SpecificRequest()

Client Adaptee

 SpecificRequest()

(protected or private)

Giancarlo Succi

37

Adapter (without multiple inheritance)

Target

 Request()

Adapter

 Request() adaptee->SpecificRequest()

Client Adaptee

 SpecificRequest()

adaptee

Giancarlo Succi

38

Bridge

Abstraction

 Operation()

Implementor

 OperationImp()

RefinedAbstraction

 imp->OperationImp()

Client

ConcreteImplementationA

 OperationImp()

imp

ConcreteImplementationB

 OperationImp()

Giancarlo Succi

39

Decorator Pattern

• Similar to composite pattern except that

features (which are also components) are

added one at a time to a single component.

• Attaches additional responsibilities to an

object dynamically.

• A decorator and its component are not

identical.

• It is a flexible alternative to subclassing for

extended functionality.

Giancarlo Succi

40

Class Diagram for Decorator Pattern

<< abstract >>

Component

Concrete

Component

Decorator

Concrete

Decorator 1 …
Concrete

Decorator n

Giancarlo Succi

41

Example of Decorator Pattern

<< abstract >>

Window

Elementary

Window

Titled

Window …
Bordered

Window

Decorated

Window

Window w;

w = new ElementaryWindow();

w = new TitledWindow(w,

“Title”);

w = new BorderedWindow(w);

Giancarlo Succi

42

Proxy Pattern

• Similar to bridge pattern.

• Actual implementation is hidden in the

real object and a proxy object is used for

presentation

• Proxies can be used for remote access,

virtual access, and for protection.

• The proxy pattern can occur either at the

class level or at the object level.

Giancarlo Succi

43

<< abstract >>

Entity

operation()

Real Entity

operation()

Proxy

 operation()

refEntity.operation();

refEntity

Real Entity Object

operation()

Proxy Object

 operation()
refEntity

Class Level

Object Level

Class Diagram for the Proxy

Giancarlo Succi

44

Behavioral Pattern

• These patterns are concerned with algorithms
and assignment of responsibilities between
objects.

• They describe the patterns of objects
interaction, and characterize complex control
flow that is difficult to follow at runtime.

• Behavioral Patterns: Visitor, Strategy, Chain
of Responsibility, Mediator, State, Command,
Interpreter, Iterator, Memento, Observer,
Template Method

Giancarlo Succi

45

Visitor Pattern

• Visitor is a class that defines an operation

to be performed on the elements of an

object structure.

• Visitor lets us to have new operation

without changing the classes of elements

on which it operates.

• It is the visited object that decides what

tasks to be performed.

• It may force a break in encapsulation.

46

Element

 accept(Visitor v)

Leaf 1

 accept

(Visitor v)

Visitor

visitX()

visitY()

Visitor 1

visitX()

visitY()

Visitor n

visitX()

visitY()

…

Leaf 2

 accept

(Visitor v)

Composite

 accept

(Visitor v)

V.visitX(this);

V.visitY(this);

For each contained

object o:

o.accept(v);

Class Diagram for the Visitor

47

Strategy Pattern

• Involves the concept of parameterizing objects
with multiple behaviors at run time.

• Useful especially when we need many related
classes that differ only in their behavior.

• Strategies eliminates the need for conditional
statements by defining a family of algorithms,
encapsulating each algorithm which are
interchangeable.

• Allows to have choice of implementation and
reduced number of subclasses.

• There would be an increased number of objects.

48

Entity

 f()

strategy.action();

<<Abstract>>

Strategy

action()

Strategy 1

action()

Strategy n

action()
…

strategy

Class Diagram for the Strategy

Giancarlo Succi

49

Chain of Responsibility Pattern

• Can be used when we have a request to be
fulfilled by one of many objects, but we do not
know in advance which one is going to handle
the request.

• We chain the receiving objects and pass the
request along the chain of objects until an
object handles it.

• Avoid the coupling of the sender of a request
to its receiver.

• The request's receipt is not guaranteed.

Giancarlo Succi

50

Class Diagram for the Chain of

Responsibility

Client

 request()

myHandler.handleRequest();

<<Abstract>>

Handler

handleRequest(r)

Handler 1

handleRequest(r) …
Handler 1

handleRequest(r)

successor

If (I want to serve r)

serve(r);

else if (successor != null)

successor.handleRequest(r);

else

throw new RequestNotSatisfiedException();

Giancarlo Succi

51

Mediator Pattern

• Used when complex interactions of objects exists

and we do not want to include the interaction in

the objects

• The concept of mediator is similar to a

blackboard used by many objects to share

knowledge and centralize control.

• The Mediator has a fixed set of primitives and it

is required that each participant need to know the

primitives to participate in the discussion.

Giancarlo Succi

52

Mediator

Mediator1

f();

y();

z();

…..

<<Abstract>>

MediatorN

OBJ1

OBJ2

OBJ3

Class Diagram for the Mediator

Giancarlo Succi

53

Proposed Exercise

• Imagine that you are the designer for a

Windows-like operating system.

• Think of features of the operating system

that will benefit from the use of design

patterns.

Giancarlo Succi

54

Other proposed exercises

• Find all the possible (… well … at least

one …) patterns present in the O/S that

you currently use

Giancarlo Succi

