
1

Introduction to the

Unified Modeling Language

(UML)

Part 2

Giancarlo Succi

IUML 2

Part 2

• Object Oriented Design in UML

• Components in UML

• Features for real-time system analysis and

design in UML

• Introduction to the Object Constraint

Language

• Introduction to Refactoring

IUML 3

Object Oriented Design in UML

IUML 4

OOD Topics

• The Idea of OOD
• Design Issues
• OOA vs. OOD
• Statechart Diagrams
• Activity Diagrams
• Sequence Diagrams
• Collaboration Diagrams
• Example of plugging everything together
• Systems and Sub-Systems
• Package Diagrams
• Design Patterns

IUML 5

Object-Oriented Design

IUML 6

• decomposability—the facility with which a design method helps the
designer to decompose a large problem into sub-problems that are
easier to solve;

• composability—the degree to which a design method ensures that
program components (modules), once designed and built, can be
reused to create other systems;

• understandability—the ease with which a program component can be
understood without reference to other information or other modules;

• continuity—the ability to make small changes in a program and have
these changes manifest themselves with corresponding changes in just
one or a very few modules;

• protection—a architectural characteristic that will reduce the
propagation of side affects if an error does occur in a given module.

Design Issues

IUML 7

Problem domain component—the subsystems that are
responsible for implementing customer requirements
directly;

Human interaction component —the subsystems that
implement the user interface (this included reusable GUI
subsystems);

Task Management Component—the subsystems that are
responsible for controlling and coordinating concurrent
tasks that may be packaged within a subsystem or among
different subsystems;

Data management component—the subsystem that is
responsible for the storage and retrieval of objects.

Ingredients for OOD

IUML 8

classesclasses

attributesattributes

operations

associations

behaviorbehavior

Analysis ModelAnalysis Model

data types

methods

links + messages

controlcontrol

Design ModelDesign Model

OOA to OOD Relationship

classes + objects

IUML 9

What distinguishes

OOD from OOA?

• Level of detail
• Names are fixed

• Fixed signatures for messages

• Multiplicity & its realization

• Visibility

• Algorithms for methods

• More detailed sequence/collaboration diagrams

•

• Additional diagram notations

IUML 10

Therefore...

• In OOD we still have class diagrams, but they are

refined to match the design of the system

In addition to class diagrams, we have several other

diagrams:

Structural Diagrams
 Object Diagrams

Deployment Diagrams

Behavioral Diagrams
 Sequence Diagrams

 Collaboration Diagrams

 Statechart Diagrams

Activity Diagrams

IUML 11

Diagrams that we will not

discuss

UML includes other diagrams that will not be

discussed in the present course:

Component Diagrams

IUML 12

Structural Diagrams for OOD in

UML

Class Diagrams

• Their structure is the same as for OOA

Object Diagrams

• They deal with objects, instances of classes

• They are absolutely equivalent to class diagrams

• Given this, we will not analyze them in deep

IUML 13

Interaction Diagrams

Behavioral Diagrams for OOD in

UML

• Statechart Diagrams
– Describe the evolution of the states of any classifier
– Commonly used for objects

• Activity Diagrams
– Describe the evolution of activities in the system

• Sequence Diagrams
– Describe the interactions between objects by time

ordering

• Collaboration Diagrams
– Describe the interactions between the objects by

organizations

IUML 14

Statechart diagrams vs

Interaction diagrams

• Interaction diagrams: show how objects interact with
each other

• Statechart diagrams: Shows the behavior of one object

– how does it change its state based on the messages it
receives

– narrowly focused, fine-grained

• Other names:
– State transition

– State diagrams

– Harel diagrams

IUML 15

Object states

• State

= set of values that describe an object at a

specific moment in time

• State is determined based on the attribute

values
overdrafted

ok

Account

balance : Float

IUML 16

State changes (1)

• States may be changed when an event

occurs

overdrafted

ok

deposit withdraw

IUML 17Giancarlo Succi

State changes (2)

• Events: Messages received

• Events may or may not change the state

overdrafted

ok

deposit

withdraw

deposit

withdraw

IUML 18Giancarlo Succi

Example of Statechart

Diagrams:

States of a hockey game

IUML 19Giancarlo Succi

States of a hockey game

playing

break

Boxing

end of game

shootout

penalty

tie[time is up]

win[time is up]

face off

IUML 20Giancarlo Succi

State diagram notation (1)

• Activity: Can take longer and be interrupted

• Action: Occur quickly

what means “quickly”?

• entry: an action that is performed on entry to

the state

• do: an ongoing activity performed while in

the state (example: display window)

• on: an action performed as a result of a

specific event

• exit: an action performed on exiting the state

State name

entry: entry action

exit: exit-action

do: activity-A

on: event-A: action-A

state variable(s)

IUML 21Giancarlo Succi

State-A State-B
Event(arguments)[condition]/action

State diagram notation (2)

• Event: message send

• Guard condition:
• Transition only occurs when guard evaluates to true

• Guards of transition exiting one state are mutually

exclusive

• Action: Processes considered to occur

quickly and are not interruptible

Each part can be omitted!

IUML 22Giancarlo Succi

State diagram notation (3)

Initial state State-B
Event(attribute)

Start State End State

IUML 23Giancarlo Succi

Example of Statechart

Diagrams (2):

Order Management

IUML 24Giancarlo Succi

State transitions for an order

Checking

do: check item

Dispatching

do: initiate delivery

Waiting

Delivered

/ get first item

Item received[some
items not in stock]

Item received[all items
available]

Delivered

[All items checked && some
items not in stock]

[All items checked &&
all items available]

get next item[not all
items checked]

Event

Guard

Action

IUML 25Giancarlo Succi

Problem: Cancel the order

• Want to be able to cancel an order at any

time

• Solutions

– Transitions from every state to state

“cancelled”

– Superstate and single transition

IUML 26Giancarlo Succi

Transitions to “cancelled”

Dispatching

do: initiate delivery

Waiting

Delivered

Item received[some

items not in stock]

Item received[all

items available]

Delivered

Cancelled

Checking
do: check

item

get next item[not all

items checked]

/ get first item

[All items checked &&

some items not in stock]

[All items checked &&

all items available]

cancelled

cancelled

cancelled

IUML 27Giancarlo Succi

State diagram notation (4)

Superstate

State-A State-BState-A State-B
Event A

Event B Event C

IUML 28Giancarlo Succi

Superstate / Substates

Dispatching

do: initiate delivery

Waiting

Delivered

Item received[some

items not in stock]

Item received[all
items available]

Delivered

Cancelled

Checking

do: check
item

get next item[not all
items checked]

/ get first item

[All items checked && some

items not in stock]

[All items checked &&
all items available]

Active

cancelled

IUML 29Giancarlo Succi

Final Note

• Statechart diagrams DO NOT HAVE TO

refer to classes or objects, they can also

refer to subsystems etc…

• … However, often this is the most widely

use of statechart diagrams...

IUML 30Giancarlo Succi

Proposed Exercises

• Define the statechart diagram of a

basketball game

• Define a statechart diagram of your

software development process

IUML 31Giancarlo Succi

Possible solution

• First, we create the diagram

• Then, we need to set the appropriate use

cases and classes

• Eventually, we move to the statechart

diagrams

IUML 32Giancarlo Succi

Open or create a new project

IUML 33Giancarlo Succi

Use Cases (1)

Go to the use case diagram

IUML 34Giancarlo Succi

Use Cases (2)

Name of the Use Case Textual

Description

Panel to add all the

relevant information
Buttons to create

use cases, actors, etc.

IUML 35Giancarlo Succi

Classes (1)

Go to the class diagram

IUML 36Giancarlo Succi

Classes (2)

Buttons to create

classes, relations, etc.

Name of the Class

Other panes to add all the

relevant information

IUML 37Giancarlo Succi

Statechart diagrams (1)

Go to the statechart diagram

IUML 38Giancarlo Succi

Statechart diagrams (2)

Buttons to create

states, transitions, etc.

Here there are the actions
-right click on the mouse

to insert a new one!

IUML 39Giancarlo Succi

A possible solution

IUML 40Giancarlo Succi

An alternative solution

Running

IUML 41Giancarlo Succi

Your solution ...

Enjoy the exercise!!!

IUML 42Giancarlo Succi

Activity diagrams

• Used to describe

– workflow

– parallel processing

• Activities

– conceptual: task to be done

– specification/implementation: method on a

class

• Similar to Petri nets

IUML 43Giancarlo Succi

Topics not covered

• Nested states vs. Concurrent states

• History states

• Internal transitions

IUML 44Giancarlo Succi

Example of activity diagrams

• The Coffee Pot

IUML 45Giancarlo Succi

Put coffee
in filter

Add water
to reservoir

Put filter
in machine

Turn on
machine

Activity diagram

IUML 46Giancarlo Succi

Activity

Activity

Activity

Activity

[synchronization

condition]

Structure of activity diagrams

[synchronization

condition]

Fork

Join

Synchronization bar:
- Activities can be carried out in

parallel (any order)

- Incoming: all predecessors

have to be finished

Activity diagram shows partial

order of activities

IUML 47Giancarlo Succi

Conditions in activity diagrams

Put coffee
in filter

Check water
in reservoir

Put filter
in machine

Turn on
machine

[not enough water] Put water in
the reservoir

IUML 48Giancarlo Succi

Structure of activity diagrams

Activity

Activity

Activity

Activity

Activity

[condition 1]

[condition 2]

[synchronization

condition]

Branch

Guard expression

IUML 49Giancarlo Succi

Proposed Exercise

• Define an activity diagram for the

previously defined basketball game

• Define an activity diagram for your

software development process … mmm

…

IUML 50Giancarlo Succi

Topics not covered

• Activities vs. Actions

• Swimlanes and Object flows

• Changes in an object’s state

IUML 51Giancarlo Succi

Continuation of the Proposed

Exercise (1)

Develop the relevant OO Statechart

Diagrams and Activity Diagrams for a

system supporting the reservation and

scheduling for taxi drivers that was

discussed in the first day of the course.

IUML 52Giancarlo Succi

Continuation of the Proposed

Exercise (2)

Develop the relevant OO Statechart

Diagrams and Activity Diagrams for the

system that manages the search, the

selection, and the purchase of books at

Chapters (http://www.chapters.ca) that was

discussed in the first day of the course

http://www.chapters.ca/

IUML 53Giancarlo Succi

Continuation of the Proposed

Exercise (3) Stocks Trading Service

• By connecting to the service, a user can connect to different banks
to acquire stock prices. The system also allows the user to perform
some trend and prediction analysis of prices. If users are interested
in ordering some stocks, they can choose to order them
immediately or with a delay. They can also either bid at a single
price or within a range of prices.

• The system should handle the situation where the connection to a
bank is down, there is a conflict of bids, or if a particular stock is
no longer available.

Develop the relevant OO Statechart Diagrams

and Activity Diagrams for…

IUML 54Giancarlo Succi

Continuation of the Proposed

Exercise (4) Network Printing Service

• There is a super high-resolution color laser printer available on the
network for users to print documents to. The service allows users to
preview the output of their document on their screens. In addition, the
user can also view the status of the printer to see whether there are
other documents waiting to be printed and whether there are any
problems with the printer (such as paper jams, out of paper, low on
toner, etc…). In addition, users can monitor their own print jobs and
delay or delete jobs as they see fit.

• To use this service, a user needs to have the proper authorization and
print quota to print. A system administrator manages users and their
print quotas.

Develop the relevant OO Statechart Diagrams

and Activity Diagrams for…

IUML 55Giancarlo Succi

Continuation of the Proposed Exercise

(5) Component Brokerage System

• This system essentially acts as a broker for software components. When developers
have completed development of their software, they can deploy them as reusable
software components for others to use. By connecting to the system over the
Internet, these developers can submit their components to the system. An
administrator then reviews the component for its functionality and ways of
connecting to other components, categorizes it, and publishes it in a publicly-
viewable area.

• Customers (such as other developers) can then connect to the public system and
browse/search the components. When they have found something useful, they can
download it for use on their own machine.

• Later, the providers of the components can connect to the system and view the
download statistics of their components. They can also add/remove components
from the system.

Develop the relevant OO Statechart Diagrams

and Activity Diagrams for…

IUML 56Giancarlo Succi

Continuation of the Proposed

Exercise (6) Bug Tracking System

• Developers use this system to track bugs in an on-going software
project. Developers who find bugs can submit a report. Other
developers can then assign the bug to a particular developer
(especially the developer responsible for the software module) to
fix it. In addition, users can browse/search all the bugs in the
system so far.

• An administrator manages users to restrict access to the bug
tracking system. In addition, the administrator should also be able
to generate reports on the state of the project in the form of a set of
web pages updated daily at 2am.

Develop the relevant OO Statechart Diagrams

and Activity Diagrams for…

IUML 57Giancarlo Succi

Interaction diagrams

• Focus on “real” entities, the objects

• Details how object communicate one

another

• 2 views:

– Time-based view

– Organization-based view

IUML 58Giancarlo Succi

Sequence diagrams

• Shows object interactions arranged in

time sequence

• It focuses on

– objects (and classes)

– message exchange to carry out the scenarios

functionality

• The objects are organized in an
horizontal line and the events in a

vertical time line

IUML 59Giancarlo Succi

Timelines

• Messages point from client to supplier

: Professor

CourseManager

Math 101 - Section

1 : CourseOffering

Add professor (Professor)

IUML 60Giancarlo Succi

Example: Sequence diagram

course form :

CourseForm

theManager :

CurriculumManager

aCourse :

Course
: Registrar

1 : set course info

2 : process
3 : add course

4 : new course

IUML 61Giancarlo Succi

an Order
Entry window

an Order

an Order
Line

a Stock Item

1: prepare()
2: * prepare() 3: check()

4: [check = true] remove()

5: needsToReorder()

Iteration
Condition

Self

delegation

X
Object deletion

Asynchronous

Message

Sequence diagrams: More

details

Activation

Object

creation

IUML 62Giancarlo Succi

Example of a transaction

From: G. Booch, J.Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide.

Addison Wesley, 1999, fig 18-2 page 247

IUML 63Giancarlo Succi

Content of sequence diagrams

• Objects

– they exchange messages among each-other

• Messages

– Synchronous: “call events,” denoted by the

full arrow

– Asynchronous: “signals,” denoted by a half

arrow

– There are also «create» and «destroy»

messages

IUML 64Giancarlo Succi

Asynchronous messages

• Does not block the caller

• Can do 3 things:

– Create a new thread

– Create a new object

– Communicate with a thread that is already

running

IUML 65Giancarlo Succi

Complete example of sequence

diagrams

From: G. Booch, J.Rumbaugh, I. Jacobson:

The Unified Modeling Language User

Guide. Addison Wesley, 1999, fig 18-4

page 252

IUML 66Giancarlo Succi

Complexity and

sequence diagrams

• KISS

= keep it small and simple

• Diagrams are meant to make things clear

• Conditional logic

– simple: add it to the diagram

– complex: draw separate diagrams

IUML 67Giancarlo Succi

Proposed Exercises

• Use the sequence diagram to model how

you receive the request to develop a new

piece of code

• Use the sequence diagram to model how

a message is sent over an Ethernet

connection

IUML 68Giancarlo Succi

Where are the boundaries?

• A boundary shapes communication

between system and outside world

– e.g. user interface or other system

• It may be useful to show boundary

classes in interaction diagrams:

– capture interface requirements

– do NOT show how the interface will be

implemented

IUML 69Giancarlo Succi

Collaboration diagrams

• Show how objects interacts with respect

to organizational units (boundaries!)

• Sequence of messages determined by

numbering

– 1, 2, 3, 4, …..

– 1, 1.1, 1.2, 1.3, 2, 2.1, 2.1.1, 2.2, 3

(shows which operation calls which other

operation)

IUML 70Giancarlo Succi

Collaboration diagram basics

: ProfessorCourseManager

Math 101 - Section 1 : CourseOffering

1 : Add professor (Professor)

IUML 71Giancarlo Succi

Comparing sequence &

collaboration diagrams

• Sequence diagrams are best to see the flow of

time

– Sequence of messages more difficult to understand in

collaboration diagrams

• Flow of control by organization is best seen

through collaboration diagrams

– Layout of collaboration diagrams may show static

connections of objects

• Complex control is difficult to express anyway!!!

IUML 72Giancarlo Succi

Content of collaboration

diagrams

• Objects
– they exchange messages among each-other

• Messages
– Synchronous: “call events,” denoted by the full

arrow
– Asynchronous: “signals,” denoted by a half arrow
– There are also «create» and «destroy» messages

• Messages are numbered and can have loops

Almost same stuff as sequence diagrams!!!!

IUML 73Giancarlo Succi

Collaboration diagram example

: Registrar

course form : CourseForm

theManager : CurriculumManageraCourse : Course

4 : new course

3 : add course

1 : set course info

2 : process

IUML 74Giancarlo Succi

Collaboration diagrams can

become VERY complex…

From: J.Rumbaugh, I. Jacobson, G. Booch : The Unified Modeling Language

Reference Manual. Addison Wesley, 1999, fig 13-51 page 202

IUML 75Giancarlo Succi

Proposed exercise

• Use the sequence diagram to model how

you receive the request to develop a new

piece of code -what is the difference with

before?

• Use the sequence diagram to represent

how a cellular phone moves from cell to

cell and handle roaming

IUML 76Giancarlo Succi

A Comprehensive Example:

The Elevator

IUML 77Giancarlo Succi

Elevator -- Use Case

press an elevator button

press a floor button

User

Elevator

enter and exit through a door

Objects

n elevators,

m floors

IUML 78Giancarlo Succi

Elevator - First Class Diagram

Floor ButtonElevator Button

Elevator Controller

Elevator

Button

illuminated: boolean

controls controls

mn 2m-2

1 1

1

controls

n

Elevator Doors

doors open: boolean

controls
1 n

IUML 79Giancarlo Succi

[button pushed,
button unlit]

Process Request

do/update request

do/turn on button

[elevator moving
in direction d,
floor f is next]

Determine if Stop Requested

do/ check requests

[no request
to stop at
floor f]

[user requested
stop at floor f]

Stop at Floor

do/stop elevator
do/open doors
do/update requests

Continue Moving

do/move elevator
one floor in
direction d

[elevator
button unlit]

Elevator Button Off

do/ turn off elevator
button

[elevator
button lit]

Elevator Controller Loop

Process Next Request

do/move elevator one
floor in direction of
next request

Floor Button Off

do/turn off floor
button

Close Elevator Doors

do/close elevator doors
after timeout

[elevator
stopped,
request(s)
pending]

Go into Wait State

do/close elevator doors

after timeout

[elevator
stopped,
no requests
pending]

[floor
button lit]

[floor
button unlit]

[no requests pending,
doors closed]

[button pushed, button lit]

Elevator -

State

Diagram

IUML 80Giancarlo Succi

User A
Elevator
Button

Elevator
Controller

Elevator Elevator
Doors

Floor
Button
Floor
Button

1. Press floor button

2.Turn on light

3.* Move up one

floor4.Turn off light
5. Open doors

6. Press elevator button

7. Turn on

light 8. Close doors

9.* Move up one

floor

11. Open doors

12. Start timer

14.* Move

up one floor

10. Turn off

light

*elevator movement can be up or down

13 Close doors

Elevator - Sequence Diagram

IUML 81Giancarlo Succi

Floor ButtonElevator Button

Elevator Controller Elevator

Elevator Doors

1. Press floor button

6. Press floor button

3. Move up one floor

9. Move up one floor
14. Move up one floor

8. Close doors 13. Close doors

5. Open doors 11. Open doors

12. Start timer

7. Turn on light 10. Turn off light 2. Turn on light 4. Turn off light

User A

Elevator - Collaboration Diagram

IUML 82Giancarlo Succi

System Design

IUML 83Giancarlo Succi

assign to zone

test status

request for alarm notification

periodic check-in

require for configuration update

request for status
Control
panel

subsystem

Sensor
subsystem

Central
communication

subsystem

request for system status

specification of type of alarm

periodic status check

Systems and Sub-Systems

IUML 84Giancarlo Succi

How to break a system into

smaller subsystems?

• Roman principle: Divide & conquer

– Split up a large system into manageable

parts

• Structured methods: functional

decomposition

• OO: Group classes into higher level units

Packages / Components

IUML 85Giancarlo Succi

Packages

• Show packages

• Show dependencies between packages

Dependency exists between 2 elements if

changes to the definition of one element

may cause changes to the other

• Goal (& art) of large scale design:

Minimize dependencies

– Constraints effects of changes

IUML 86Giancarlo Succi

Example of packages

Orders Customers

Order Capture
Application

Mailing List
Application

Order Capture
UI

AWT Mailing List
UI

A System to

mail

and manage

orders

IUML 87Giancarlo Succi

Nested packages

Orders Customers

Order Capture
Application

Mailing List
Application

Order Capture
UI

AWT Mailing List
UI

Domain

• 2 interpretations

– transparent: all

contents of contained

packages visible

– opaque: only classes

of the container are

visible

IUML 88Giancarlo Succi

How can the complexity of a

package interface be restricted?

• Give all classes in the package only

package visibility

• Define a public class that provides the

public behavior of the package

• Delegate the public operations to the

appropriate class inside the package

Facades [Gamma et al. 1994]

IUML 89Giancarlo Succi

Rules of thumb

• Try to avoid cycles in the dependency

structure

• To many dependencies: Try to refactor

the system

• Use them when the system class diagram

is not legible on a single letter size sheet

of paper

IUML 90Giancarlo Succi

Packages vs. Diagrams

Packages represent physical divisions of the

development to do

 Their goal is to ease the definition of

workpackages and to develop software

systems

Diagrams represent logical assembly of

information

 Their goal is ease the understanding of the

target domain

IUML 91Giancarlo Succi

... you’ll find recurring patterns of classes and
communicating objects in many object-oriented
systems. These patterns solve specific design problems
and make object-oriented design more flexible, elegant,
and ultimately reusable. They help designers reuse
successful designs by basing new designs on prior
experience. A designer who is familiar with such
patterns can apply them immediately to design
problems without having to rediscover them.

Gamma and his colleagues

More to follow (1/2)

A Glimps on Design Patterns

(1/2)

IUML 92Giancarlo Succi

• The design pattern name is an abstraction that conveys

significant meaning about it applicability and intent.

• The problem description indicates the environment and

conditions that must exist to make the design pattern applicable.

• The pattern characteristics indicate the attributes of the design

that may be adjusted to enable the pattern to accommodate into a

variety of problems.

• The consequences associated with the use of a design pattern

provide an indication of the ramifications of design decisions.

More to follow (2/2)

A Glimps on Design Patterns

(2/2)

IUML 93Giancarlo Succi

Components in UML

IUML 94Giancarlo Succi

How components are

represented in UML

mickeymouse.dll

IUML 95Giancarlo Succi

Components and interfaces

mickeymouse.dll

Detective

Friend

BoyFriend

IUML 96Giancarlo Succi

Components and Collaborations

mickeymouse.dll

Detective

Friend

BoyFriend

minniemouse.dll

goofy.dll

pluto.dll

IUML 97Giancarlo Succi

Detailed View of a Collaboration

Realization

Dependency

IUML 98Giancarlo Succi

Components and classes

IUML 99Giancarlo Succi

Something totally different

IUML 100Giancarlo Succi

Stereotypes for components

UML defines five kinds of stereotypes that can be

applied to components:

executable

library

table

file

document

IUML 101Giancarlo Succi

The stereotypes!

From G. Booch, J.

Rumbaugh, I. Jacobson

(1999). The Unified Modeling

Language Reference Guide,

Addison Wesley, Fig. 25-6, p.

354

Executable

Library

Table

File

Document

IUML 102Giancarlo Succi

We can define our own icons...

Detective

Friend

Boyfriend

The icons are from the Walt

Disney web site

IUML 103Giancarlo Succi

Nodes

A node is a physical element that
exists at run time and represents a
computational resource, generally
having at least some memory and,

often, processing capabilities.

From G. Booch, J. Rumbaugh, I. Jacobson

(1999). The Unified Modeling Language

Reference Guide, Addison Wesley, p. 360

IUML 104Giancarlo Succi

Graphical representation of a

node in UML

IUML 105Giancarlo Succi

Icons can be associated to

nodes...

The icon is from

the Walt Disney

web site

IUML 106Giancarlo Succi

Nodes can be identified by

extended names

From G. Booch, J. Rumbaugh, I. Jacobson (1999). The Unified

Modeling Language Reference Guide, Addison Wesley, Fig. 26-2, p. 361

IUML 107Giancarlo Succi

Components and Nodes

 Components are like nodes (have names; participate in
dependency, generalization, and association relationships;
may be nested; may have instances; may participate in
interactions; …).

 However, components are things that participate in the
execution of a system; nodes are things that execute
components.

 Components represent the physical packaging of otherwise
logical elements; nodes represent the physical deployment
of components .

IUML 108Giancarlo Succi

A Deployment Diagram with Nodes

containing Components…

From G. Booch, J. Rumbaugh, I. Jacobson (1999). The Unified

Modeling Language Reference Guide, Addison Wesley, Fig. 26-6, p. 366

IUML 109Giancarlo Succi

Real Time System Analysis and

Design in UML

IUML 110Giancarlo Succi

Real Time UML

Dealing with UML we have to consider 2

different aspects:

 The features of UML that can be used to

support Real Time Applications

 The proposed UML extensions that handle

Real Time Applications -the self-extending

features of UML can be used for this purpose

IUML 111Giancarlo Succi

Real Time Constructs in UML

UML has features to support Real-Time

applications:

• Change Event

• Time Event

• Timing constraints

IUML 112Giancarlo Succi

Time and Change Events

 Time and change events specify when action

has to be performed at a given instant of time

 “when” is a change event that specifies the

date/time when the event will occur

when (12:00AM) / goForLunch()

 “after” is a change event that specifies after how

much time a given event will be executed

after(5 minutes) / put the egg in the pot

IUML 113Giancarlo Succi

Change and Time Events -

Example

IUML 114Giancarlo Succi

Timing Constraints

• Timing constraints can be added to

messages:

– there are three “built-in” variables that can

be used, startTime, stopTime, and

executionTime

– the “every” construct identifies a message

that is resent at given intervals of time

IUML 115Giancarlo Succi

Example of Timing Constraints

r : Lazy Dogg : Owner

1: callToOrder()

{every 1 hour}

2: checkTheHouse()

{executionTime < 1 hour}

IUML 116Giancarlo Succi

Unfortunately

• No existing tool or programming

language enforce such constraints!!!

(Neither Rose 2000 …)

IUML 117Giancarlo Succi

Proposed Exercise

• Model the problem of calling the taxi

company to get a taxi to the airport in

time to get the plane

• Start from the taxi class diagram of last

week

IUML 118Giancarlo Succi

ROOM: Real Time Object Oriented

Modeling

• Shorthand notation for capsule instances

– iconified form

«capsule»

anX:CapsuleClassX

portA : ProtocolA::master

portC : ProtocolB~

«port»

portA:ProtocolA::master

1

From a slide of B. Selic of Object Time

For more information: http://www.objecttime.com/

IUML 119Giancarlo Succi

The Object Constraint Language

(OCL)

IUML 120Giancarlo Succi

What is OCL

OCL is the expression language for UML

 It is a pure language, no side effects!

 It is a modeling language, it cannot be

executed

It is a formal language, it has a well defined

semantics

For more information: http://www.software.ibm.com/ad/standards/ocl.html

IUML 121Giancarlo Succi

Goal of OCL

• To define in a clean and unambiguous

way the guard statements in UML

Dog

Real weight;

eat(f: Real);

bark();

Real age;
Our sample class

Person*

Joe Fido

owner

pet

IUML 122Giancarlo Succi

Major OCL features (1)

• Attributes have the same syntax as in

Java (but “this” that becomes “self”)

– e.g., self.weight < 100

• Expressions are strongly typed and type

conformance is checked

– e.g., self.weight < “abc”

IUML 123Giancarlo Succi

Major OCL features (2)

• Pre and post conditions are assigned to

operations

Dog::bark()

– pre: neighborhood is happy

– post: neighborhood is angry

Dog::eat(f: Real)

– post: weight := weight@pre + f

IUML 124Giancarlo Succi

Major OCL features (3)

• Associations of cardinality 1 are treated

as attributes

– Fido.owner = Joe

• Association of cardinality not 1 are

treated as sets

– Joe->pet is a set of all the pets of Joe

and have well defined operations

“.” and “->” can be used polymorphically

IUML 125Giancarlo Succi

Major OCL features (4)

OCLAny

Real OCLType

Integer

Strings

Booleans

Enumerations

Collection

Set Bag Sequence

IUML 126Giancarlo Succi

Methods of collections in OCL

• size

• includes

• count

• includesAll

• isEmpty

• notEmpy

• sum

• exists

• forAll

• iterate

select

reject

collect

IUML 127Giancarlo Succi

Introduction to Refactoring

IUML 128Giancarlo Succi

Content

• The concept of refactoring UML diagrams

• A simple example

• Techniques used for refactoring

Source: Don Roberts Tutorial on Refactoring

IUML 129Giancarlo Succi

Key idea

 Software systems are evolving entities that

require constant upgrading and housekeeping

 We need to define ways to make upgrading and

housekeeping “simple” aka “not horrendously

difficult”

 Incremental development with short life-cycles

and constant refactoring

IUML 130Giancarlo Succi

Refactoring UML diagrams

• Revising our system, restructuring its
design and the design of its components

striving for simplicity and higher

adherence to the structure of the
domain

Maintaining its behavior

IUML 131Giancarlo Succi

Example

IUML 132Giancarlo Succi

Example (cont)

Refactoring

Last Step

IUML 133Giancarlo Succi

Techniques used for refactoring

Class (Static)

(member) data

(Static)

(member)

function

Temp. data

Add

Delete

Rename

Push

Up/Down

Break Down /

Condense

Re-qualify

IUML 134Giancarlo Succi

Design patterns and refactoring

• Design patterns can be instrumental for

refactoring:

1. They hint the inner structure of the code

2. They guide the development of new

structures of objects and classes

3. They help separating the implementation

strategies from the implementation goal

IUML 135Giancarlo Succi

Guide for refactoring with Design

Patterns

• Consistent creation across classes: Abstract
Factory

• Creation depending on environment needs: Factory
Method

• Creation based on a prototypical entity: Prototype
• Variable number of features: Decorator
• Tree structure: Composite
• Double dispatching: Visitor
• Flexible implementation of an algorithm: Strategy
• Flexible implementation of a class: Bridge

IUML 136Giancarlo Succi

Criteria for refactoring

Refactor when the program shows deficiencies

and not for “conceptual improvement”

Write the code exactly once (see the

<<include>> relation in Use Cases)

Eliminate large entities (methods, classes,

packages/namespaces)

IUML 137Giancarlo Succi

Inhibitor$$

• “The system works” and

No time

No money

• Dealing with someone else’s

design abstractions

IUML 138Giancarlo Succi

Continuation of the Proposed

Exercise (1)

Develop the remaining OO Design

Diagrams for the system supporting the

reservation and scheduling for taxi drivers

that was discussed in the first day of the

course. Then think at how you could

refactor the system developed so far.

IUML 139Giancarlo Succi

Continuation of the Proposed

Exercise (2)

Develop the remaining OO Design

Diagrams for the system that manages the

search, the selection, and the purchase of

books at Chapters (http://www.chapters.ca)

that was discussed in the first day of the

course. Then think at how you could

refactor the system developed so far.

http://www.chapters.ca/

IUML 140Giancarlo Succi

Continuation of the Proposed

Exercise (3) Stocks Trading Service

• By connecting to the service, a user can connect to different banks
to acquire stock prices. The system also allows the user to perform
some trend and prediction analysis of prices. If users are interested
in ordering some stocks, they can choose to order them
immediately or with a delay. They can also either bid at a single
price or within a range of prices.

• The system should handle the situation where the connection to a
bank is down, there is a conflict of bids, or if a particular stock is
no longer available.

Develop the remaining OO Diagrams for…

Then refactor …

IUML 141Giancarlo Succi

Continuation of the Proposed

Exercise (4) Network Printing Service

• There is a super high-resolution color laser printer available on the
network for users to print documents to. The service allows users to
preview the output of their document on their screens. In addition, the
user can also view the status of the printer to see whether there are
other documents waiting to be printed and whether there are any
problems with the printer (such as paper jams, out of paper, low on
toner, etc…). In addition, users can monitor their own print jobs and
delay or delete jobs as they see fit.

• To use this service, a user needs to have the proper authorization and
print quota to print. A system administrator manages users and their
print quotas.

Develop the remaining OO Diagrams for…

Then refactor …

IUML 142Giancarlo Succi

Continuation of the Proposed Exercise

(5) Component Brokerage System

• This system essentially acts as a broker for software components. When developers
have completed development of their software, they can deploy them as reusable
software components for others to use. By connecting to the system over the
Internet, these developers can submit their components to the system. An
administrator then reviews the component for its functionality and ways of
connecting to other components, categorizes it, and publishes it in a publicly-
viewable area.

• Customers (such as other developers) can then connect to the public system and
browse/search the components. When they have found something useful, they can
download it for use on their own machine.

• Later, the providers of the components can connect to the system and view the
download statistics of their components. They can also add/remove components
from the system.

Develop the remaining OO Diagrams for…

Then refactor …

IUML 143Giancarlo Succi

Continuation of the Proposed

Exercise (6) Bug Tracking System

• Developers use this system to track bugs in an on-going software
project. Developers who find bugs can submit a report. Other
developers can then assign the bug to a particular developer
(especially the developer responsible for the software module) to
fix it. In addition, users can browse/search all the bugs in the
system so far.

• An administrator manages users to restrict access to the bug
tracking system. In addition, the administrator should also be able
to generate reports on the state of the project in the form of a set of
web pages updated daily at 2am.

Develop the remaining OO Diagrams for…

Then refactor …

IUML 144Giancarlo Succi

Proposed comprehensive

example

• Define a system to support all the features

(calling, billing, roaming, + the extra gadgets of

your choice) of a new form of cellular service

– While at home or within 10 meters of your home,

same charges as the local phone

– While in the city limits, only charge for airtime

– Within Canada, roaming access from the local

provider that set himself the charges + airtime

– Outside Canada, no service in place

