
1

Introduction to the

Unified Modeling Language

(UML)

Part 1

Giancarlo Succi

IUML 2Giancarlo Succi

Goal of the topic

 To formalize the basic ideas of OO …

… Using the Unified Modeling

Language

 These lectures are NOT a comprehensive review

of UML (it would take 6 months full time …)

IUML 3Giancarlo Succi

Structure of the course

• Brief summary of the core OO features that

we will discuss

• Few basic definitions

• Overview of UML

• Object Oriented Concept Modeling in UML

• Object Oriented Analysis in UML

• Object Oriented Design in UML

IUML 4Giancarlo Succi

CAVEAT!!!

• Lots and lots and lots of details, names,

and diagrams

• The core are classes and class diagrams

It looks simple but it is not ...

Stop me when something get messy

IUML 5Giancarlo Succi

Introduction to OO

IUML 6Giancarlo Succi

Why is OO popular?

• The hope that it will increase

productivity

• Natural way of structuring the world

– Objects

– Messages

– Responsibility

IUML 7Giancarlo Succi

What is object-oriented software

development?

• A way to view the world of the

application

• A way to describe a model of the

application

• A comprehensive methodology that

– allows to develop a software system

– uses similar concepts within the whole

development process

IUML 8Giancarlo Succi

Object oriented system

development

• Means to achieve high quality

– Information Hiding

– Abstraction

– Modularization

– Reuse

An object oriented approach - more or

less - forces the software developer to

apply these concepts

IUML 9Giancarlo Succi

OO methodologies

• Late 80’s early 90: several OO methodologies

developed

– different notations

– different processes

• Main approaches

– Booch

– Rumbaugh

– Jacobson

– UML

IUML 10Giancarlo Succi

Key Idea

• Represent the world in terms of:

Interacting Objects

• Use this representation in all the life cycle
development phases:

OO Concept Modeling
OO Analysis
OO Design

OO Programming

IUML 11Giancarlo Succi

A Simple OO Model

Joe

Porsche

IUML 12Giancarlo Succi

Key Concepts

• classes and class hierarchies
–attributes
–methods
–inheritance
–relations with other classes

• objects: instances of classes
–attributes with assigned values
–instantiated relations

• messages and methods to respond to a
message

IUML 13Giancarlo Succi

An OO Model

Animal

Dog Person

Pyr GuyGirl

Name; Address;

Age; Lic. #

Means of

Transportation

Plane Car

PorcheFerrari

Make; Model;

ID Number;

Color

Drives

is-ais-a

is-a is-a is-a

is-a is-a

is-a is-a

has

Travel

Nancy; 11 10th Av.,

Washington, DC; 21;

XCW553245

has

Ferrari; 550 Maranello;

I LOVE F; Red
Is instance of

Is instance of

IUML 14Giancarlo Succi

In our example

• Nancy is a girl, with a sequence of attributes that are
inherited from Person
– We identify that specific girl with the sequence of

attributes: Nancy; 11 10th Av.,Washington, DC; 21;
XCW553245

• The 550 Maranello is an instance of Ferrari, with a
sequence of attributes that are inherited from Car
– We identify that specific Ferrari with the sequence of

attributes: Ferrari; 550 Maranello; I LOVE F; Red

While inheriting, some attributes can become fixed

IUML 15Giancarlo Succi

The OO Process Model

IUML 16Giancarlo Succi

analysis design

analysis design analysis design

planning

planning analysis design
extract

reusable

classes
prototype test

customer
evaluation

planning analysis design
extract

reusable

classes
prototype test

customer
evaluation

planning analysis design
extract

reusable

classes
prototype test

customer
evaluation

. . .

review and refinement

review and refinement

review and refinement

review and refinement

early analysis/design iterations

first prototype

next iteration

nth iteration

Typical Process for an Object-

Oriented Project

IUML 17Giancarlo Succi

Let’s define some term ...

IUML 18Giancarlo Succi

• A class is a collection of similar objects; a class often defined as:

– template

– generalized description

– pattern

– “blueprint” ... describing a collection of similar items

• A class identifies properties (attributes) that belong to
all objects of the class and behaviors (operations) of all
objects of the class

• Once a class of items is defined, a specific instance of
the class can be defined

Classes

IUML 19Giancarlo Succi

C++ CODE
class funiture{

public:
float cost;
float dimension;
char * location;
char * color
.
.

};
.
.
void main(void){

.

.
furniture aForniture;

.

.
}

Instantiating Classes

furniture

cost

dimension

weight

location

color
aForniture

cost

dimension

weight

location

color

name

attributes

methods

<<instantiate>>

IUML 20Giancarlo Succi

Operations (a.k.a. Services)

• An executable procedure that is encapsulated
in a class and is designed to operate on one or
more data attributes that are defined as part of
the class

• Often textbook say that an operation is invoked
via message passing

• The term “operation” has several synonym:
Service, Function Entry (Concurrent Pascal),
Member Function (C++), … ? Methods ?

IUML 21Giancarlo Succi

Inheritance

• Inheritance is the ability to define classes that are
extensions of other classes with new and/or
specialized attributes and methods

• For instance class Dog inherits from class Animal,
meaning that Dog has (inherits) all the attributes
and the methods of Animal, and can redefine some
of them and add new ones

• People say: Dog “is-a” Animal, Dog “extends”
Animal, the class of Animals “contains” the class
of Dogs, Animal “generalizes” Dog, …

IUML 22Giancarlo Succi

furniture
cost

dimension

weight

location

color

buy()

sell()

weigh()

move()

chair
cost

dimension

weight

location

color

buy()

sell()

weigh()

move()

footstool
cost

dimension

weight

location

color

buy()

sell()

weigh()

move()

Class Inheritance

IUML 23Giancarlo Succi

motorVehicle

color

numrOfPass

numOfCyl

tireSize

motorCycle

numOfCCs

isTwoStroke

Car

numOfDoors

isHardTop

truck

loadCapacity

numOfAxels

A Representation of Inheritance

IUML 24Giancarlo Succi

Inheritance is NOT Instantiation

Animal

Dog Person

Pyr GuyGirl

is-a

Lab

is-a

is-a is-a is-ais-a

I Love

Pyrs!!!!

I refer to the class of Pyrs that is

derived from the class of Dogs

I refer to Pluto, an instance of class

Dog - I do not know and I do not care

which sub-class of dog Pluto belongs to

I Love
Pluto!!!

IUML 25Giancarlo Succi

horse

height

type

color

automobile

numOfDoors

isHardTop

numOfCyl

hairDryer

numOfSpeeds

isCordless

meansOf

Transportation

numOfPass

machine

typeOfEnergy

Multiple Inheritance

IUML 26Giancarlo Succi

Polymorphism

• Polymorphism is the ability to use the same name for

methods performing operations of the “same kind” on

different objects

• In Math there are several example of polymorphism:

+ is used to sum any kind of number (Natural,

Integers, Real, Complex, …) but also vectors and

matrixes

• Polymorphism help managing large set of classes with

similar operations, without having to remember bizarre

names (e.g., printf, fprintf, sprintf, …)

IUML 27Giancarlo Succi

Various forms of Polymorphism

• Ad-hoc polymorphism, also called “overloading”:

several functions are defined with the same name

but different parameters

– print(file), print(string), print(number)

• Generic polymorphism: a general template defines

a structure common to a set of classes / functions
template <class A> void swap(A &x, A &y) {

A t=x; x=y; y=t; }

• Inheritance polymorphism or overriding ...

IUML 28Giancarlo Succi

class Graph{//base class

public: virtual void draw(){

cout<<“in base\n”; }

};

class LineGraph : public Graph

public: virtual void draw(){

cout<<“in LineGraph\n”; }

};

class PieChart : public Graph{

public:virtual void draw(){

cout<<“in piechart\n”; }

};

void main(void){

LineGraph lg;

PieChart pc;

DrawCorrect(lg);

DrawCorrect(pc);

Graph *list[10];

int i;

for(i=1;i<10;i++)

list[i]= … ;

for(i=1;i<10;i++)

DrawCorrect(*list[i]);

}

void DrawCorrect(Graph &t){
t.draw();

}

Polymorphism: Overriding

IUML 29Giancarlo Succi

UML in Some Details

IUML 30Giancarlo Succi

UML

• The Unified Modeling Language tries to integrate

older approaches

• Developed by Rational (CASE tool)

– they hired Booch, Rumbaugh, Jacobsen

• Standardized by the OMG (Object management

group)

• Supported by almost all OO CASE tools … but with

some limitations …

• Currently it is at version 1.3 …

IUML 31Giancarlo Succi

UML has many entities …

Classifier Diagram

Entity

Class Object … Class Diagram …

IUML 32Giancarlo Succi

UML Classifiers

• Class

• Interface

• Datatype

• Component

• Node

• Use Case

• Subsystem

• …

IUML 33Giancarlo Succi

UML has 9 kinds of diagrams

 Class Diagram

 Object Diagram

 Component Diagram

 Deployment Diagram

 Use Case Diagram

 Sequence Diagram

 Collaboration Diagram

 Statechart Diagram

 Activity Diagram

Structural Diagrams

Behavioral Diagrams

IUML 34Giancarlo Succi

Use case diagrams

• Requirements/ early analysis

Market Analysis
Financial Planner

IUML 35Giancarlo Succi

Class diagrams (motor vehicle)

motorVehicle

color

numrOfPass

numOfCyl

tireSize

motorCycle

numOfCCs

isTwoStroke

Car

numOfDoors

isHardTop

truck

loadCapacity

numOfAxels

IUML 36Giancarlo Succi

Statechart diagrams (air cond.)

Initialize

Idle

Daytime

Nighttime

Temperature drop or rise / adjustTemperature()

Temperature drop or rise /

adjustTemperature()

Terminate

Climate
Sunset /

Lights::off()

Terminate Climate

Sunrise /

Lights::on()

Define

Climate

IUML 37Giancarlo Succi

Put coffee
in filter

Add water
to reservoir

Put filter
in machine

Turn on
machine

Activity diagrams (coffee machine)

IUML 38Giancarlo Succi

Sequence diagrams (again air cond.)

Temperature Controller :

Environmental Controller

Air Conditioner

: Cooler
: SystemLog

1: RecordEvent ()

2: startUp ()

3: RecordEvent ()

IUML 39Giancarlo Succi

Collaboration diagrams (again …)

Temperature Controller : Environmental Controller Air Conditioner : Cooler

: SystemLog

2: startUp ()

1: RecordEvent ()
3: RecordEvent ()

IUML 40Giancarlo Succi

Object Oriented Concept Modeling

IUML 41Giancarlo Succi

Goals of OO Concept Modeling

Understanding the operational context of the

system

 OO Context Analysis

Understanding the effective requirements of

the system

 OO Requirement Analysis

Sometimes people refer to this phase only as

Requirement Analysis, but they do mean both

activities

IUML 42Giancarlo Succi

• A Use Case Description is a scenario that describes a

“thread of usage” for a system

• A Use Case Description includes:

A Diagram, with actors representing roles

people or devices play as the system functions

and use cases, that is, cases of use of the system

A Textual Description sequencing the activities

Use Cases for OO Concept

Modeling

IUML 43Giancarlo Succi

student

Select/Delete

Courses

Current Status

Print

Timetable

use case

actor

Use Case Diagram -

Early Example

IUML 44Giancarlo Succi

What is a Use Case?

• Typical interaction between actors and system

• Process that satisfies a user’s need

• Describes a scenario -i.e., how the system is
used

• Example: for a Word processor

–Make some text bold

– Create an index

–Delete a word

IUML 45Giancarlo Succi

Facts on Use Cases

• Granularity: Small or large

• Often: Use cases capture user-visible

function

• Always: Use cases achieve a discrete

goal

• Always: Use cases describe externally

required functionality

IUML 46Giancarlo Succi

When and how

• Contest capture - first thing to do

• Use case: Every discrete thing your customer

wants to do with the system

– give it a name

– describe it shortly (few paragraphs)

you will add details later

IUML 47Giancarlo Succi

• What are the main tasks or functions that are

performed by the actor?

• What system information will the the actor acquire,

produce or change?

• Will the actor have to inform the system about changes

in the external environment?

• What information does the actor desire from the

system?

• Does the actor wish to be informed about unexpected

changes?

Developing a Use Case

IUML 48Giancarlo Succi

Example

Suppose we want to model the NYSE

…

There are traders ...

… and Sales systems

IUML 49Giancarlo Succi

Use case diagram

Evaluation

Limit exceeded

Analyze risks

<<includes>>

Trader
Price details

<<includes>

Get the deal

<<extends>>

Sales system

IUML 50Giancarlo Succi

Actors

• Role that a user plays with respect to the

system

• Actors carry out use cases

– look for actors, then their use cases

• Actors do not need to be humans!

• Actors can get value from the use case or

participate in it

IUML 51Giancarlo Succi

Extends relationship

• Extends: One use case is similar to

another but does a bit more

– Capture the simple, normal use case first

– For every step ask

• what could go wrong

• how might this work out differently

– Plot every variation as an extension of

the use case

Limit exceeded

Get the deal

<<extends>>

IUML 52Giancarlo Succi

• Used when a chunk of behavior is similar across

more than one use case

• Avoids copy-and-paste of parts of use case

descriptions

EvaluationAnalyze risks

<<includes>>

Price details

<<includes>

Includes relationship

IUML 53Giancarlo Succi

Comparing extends/includes

• Different intent

– extends

• same actor performs use case and all extensions

• actor is linked to “base” case

– includes

• often no actor associated with the common use case

• different actors for “caller” cases possible

IUML 54Giancarlo Succi

Textual description

• Generic, step-by-step written description

of the interactions between the actor(s)

and a use case

• Clear, precise, short descriptions

IUML 55Giancarlo Succi

Example use case description

• Use Case: Get the deal

1. Enter the user name & bank account

2. Check that they are valid

3. Enter number of shares to buy & share ID

4. Determine price

5. Check limit

6. Send order to NYSE

7. Store confirmation number

IUML 56Giancarlo Succi

Notice that ...

Not all cases of use have been listed (each

diagram provides a partial view)

The include relation support the factorization of

the common specs of the system

There is NOT a 1:1 correspondence between

screens and ovals

BEWARE ...

IUML 57Giancarlo Succi

The KILLER

Customer

Reservation, schedule and fares subsystem

Aeroplan frequent flyers subsystem

Traveler services subsystem

System

Main UI

<<includes>>

<<includes>>

<<includes>>

<<includes>>

IUML 58Giancarlo Succi

Textual Description (only for the

frequent flyer use case)

The user enters the subsystem to gain more

information about its frequent flyer status. Inside the

subsystem, the user can access (a) general

information about the frequent filer program -the

reward schema, how to enroll, how to get miles with

partner companies, and (b) specific information on

her/his status, such as the miles earned, the status

level. The user can also update her/his address.

NOTICE: This is a very different format!!!

IUML 59Giancarlo Succi

Proposed Exercise (1)

Develop an OO Concept Model for a

system supporting the reservation and

scheduling for taxi drivers.

IUML 60Giancarlo Succi

Proposed Exercise (2)

OOCM for Stocks Trading Service

• By connecting to the service, a user can connect to
different banks to acquire stock prices. The system also
allows the user to perform some trend and prediction
analysis of prices. If users are interested in ordering some
stocks, they can choose to order them immediately or
with a delay. They can also either bid at a single price or
within a range of prices.

• The system should handle the situation where the
connection to a bank is down, there is a conflict of bids,
or if a particular stock is no longer available.

IUML 61Giancarlo Succi

Proposed Exercise (3)

OOCM for Network Printing Service

• There is a super high-resolution colour laser printer available
on the network for users to print documents to. The service
allows users to preview the output of their document on their
screens. In addition, the user can also view the status of the
printer to see whether there are other documents waiting to be
printed and whether there are any problems with the printer
(such as paper jams, out of paper, low on toner, etc…). In
addition, users can monitor their own print jobs and delay or
delete jobs as they see fit.

• To use this service, a user needs to have the proper
authorization and print quota to print. A system administrator
manages users and their print quotas.

IUML 62Giancarlo Succi

Proposed Exercise (4)

OOCM for Component Brokerage System

• This system essentially acts as a broker for software components. When

developers have completed development of their software, they can deploy them

as reusable software components for others to use. By connecting to the system

over the Internet, these developers can submit their components to the system. An

administrator then reviews the component for its functionality and ways of

connecting to other components, categorizes it, and publishes it in a publicly-

viewable area.

• Customers (such as other developers) can then connect to the public system and

browse/search the components. When they have found something useful, they

can download it for use on their own machine.

• Later, the providers of the components can connect to the system and view the

download statistics of their components. They can also add/remove components

from the system.

IUML 63Giancarlo Succi

Proposed Exercise (5)

OOCM for Bug Tracking System

• Developers use this system to track bugs in an on-going
software project. Developers who find bugs can submit a
report. Other developers can then assign the bug to a
particular developer (especially the developer responsible
for the software module) to fix it. In addition, users can
browse/search all the bugs in the system so far.

• An administrator manages users to restrict access to the
bug tracking system. In addition, the administrator should
also be able to generate reports on the state of the project
in the form of a set of web pages updated daily at 2am.

IUML 64Giancarlo Succi

Not covered

• Generalization in Use Cases

• Generalization in Actors

• Presence of extension points

IUML 65Giancarlo Succi

Object Oriented Analysis

IUML 66Giancarlo Succi

OOA - Content

• Structure of OO Analysis
• Extraction of Classes
• Representing classes in class diagrams
• Associations
• Roles
• Advanced Stuff on Associations
• Classes vs. Objects
• Attributes
• Operations
• Aggregation
• Inheritance
• When to use class diagrams

IUML 67Giancarlo Succi

• extract candidate classes

• establish basic class relationships

• define a class hierarchy

• identify attributes for each class

• specify methods that service the attributes

• indicate how classes/objects are related

• build a behavioral model

• iterate on the first five steps

OOA- A Generic View

IUML 68Giancarlo Succi

Extraction of Classes

• Normal sequence: Get the deal

1. Enter the user name & bank account

2. Check that they are valid

3. Enter number of shares to buy & share ID

4. Determine price

5. Check limit

6. Send order to NYSE

7. Store confirmation number

IUML 69Giancarlo Succi

Another Example

• Extract the classes from the previously

discussed Lufthansa web site.

IUML 70Giancarlo Succi

Extraction of Classes in the

Lufthansa example

The user enters the subsystem to gain more

information about its frequent flyer status. Inside the

subsystem, the user can access (a) general

information about the frequent flyer program -the

reward schema, how to enroll, how to get miles with

partner companies, and (b) specific information on

her/his status, such as the miles earned, the status

level. The user can also update her/his address.

IUML 71Giancarlo Succi

Class diagram

• Central for OO modeling

• Shows static structure of the system

– Types of objects

– Relationships

• Association

• Subtypes

• Dependency

IUML 72Giancarlo Succi

We Have 3 Perspectives

Conceptual (OOA)

 Shows concepts of the domain

 Independent of implementation

Specification (OOD)

 General structure of the running system

 Interfaces of software (types)

Implementation (OOP)

 Details of the implementation

Most often the only used

IUML 73Giancarlo Succi

A Class

• Set of objects

• Defines

– name

– attributes

– operations

Task

startDate
endDate

setStartDate (d : Date = default)
setEndDate (d : Date = default)
getDuration () : Date

IUML 74Giancarlo Succi

Class versus type

Type

protocol understood by an object

set of operations that are used

Class
implementation oriented construct

implements one or more types

• In Java a type is an interface, in C++ a type is
an abstract class

• UML 1.3 has the <<type>> stereotype

IUML 75Giancarlo Succi

Association

• Relationship between instances of classes

– A student is registered for a course

– A professor is teaching the course

Association

IUML 76Giancarlo Succi

Class diagram example

*

Light

off()
on()

1

1

Heater

1

1

Cooler

1

Environmental Controller

Define_climate()
Terminate_climate()

*

1

1

1

1

1

SystemLog

Display()
RecordEvent()

Actuator

startUp()
shutDown()

Temperature

Back to the

example of

the air

cond.

system

IUML 77Giancarlo Succi

Classes and Diagrams

• One class can be part of several diagrams

• Diagrams shall illustrate specific aspects

– Not too many classes

– Not too many associations

– Hide irrelevant attributes/operations

Several iterations are needed to create a
“proper” diagram

IUML 78Giancarlo Succi

Association: Relationship

between classes

An order comes from one customer: a customer may
make several orders

Order

dateReceived

isPrepaid

number: String

price : Money

dispatch()

Customer

name
address

creditRating()

hasCustomer

Name of the Association Direction of the Association

* 1

Multiplicity of each end

IUML 79Giancarlo Succi

Naming associations

• Avoid meaningless names

– associated_with

– has

– is_related_to

• Name is often a verb phrase

– has_part

– is_contained_in

IUML 80Giancarlo Succi

Roles

• Association has two roles

• Role is a direction on the association

• Role

– Explicit labeled

– Implicitly named after the target class

Order

dateReceived
isPrepaid
number :
String

price : Money

dispatch()

OrderLine

quantity
price
isSatisfied

*

1

line item

Role

IUML 81Giancarlo Succi

Role names

• A Role identifies one end of an association

• Role name is obligatory for associations

between objects of the same class

Name

Address

Company
Works for

Name

Insurance no.

Address

Person

employer employee

Name

Insurance no.

Address

Person

Manager

Supervises

Salesperson

*

IUML 82Giancarlo Succi

Multiplicity

• Indicates how many object can

participate in the relationship

Order

dateReceived
isPrepaid
number :
String

price : Money

dispatch()

Customer

name
address

creditRating()* 1

IUML 83Giancarlo Succi

Multiplicity (2)

• *: 0..infinity

• 1: 1..1

• 0..1

• 1..100

• 2,4,5

IUML 84Giancarlo Succi

Responsibilities

• The Customer specifies the Orders

• The Orders list the Customer

Order

dateReceived

isPrepaid

number : String

price : Money

dispatch()

Customer

name
address

creditRating()
* 1

Responsibilities

- lists the customer

Responsibilities

- specifies orders

IUML 85Giancarlo Succi

Navigability - Indicated by Arrow

• Order has to be able to determine the Customer

• Customer does not know all Orders

• Bi-directional association: Navigability in both
directions (requires roles for proper identification)

Order

dateReceived

isPrepaid

number: String

price : Money

dispatch()

Customer

name
address

creditRating()

IUML 86Giancarlo Succi

Summary: Basic notation for

associations

Class B Class B
Association name

role_Arole_B

Order Part
Contains

included_inmade_up_of

IUML 87Giancarlo Succi

Naming conventions

• Naming conventions allow often to infer

the names of messages from the diagram

class Order {

public Enumeration orderLines();

public Customer customer();

}

Order

dateReceived
isPrepaid
number :
String

price : Money

dispatch()

OrderLine

quantity
price
isSatisfied

*

1

*

1

line item

IUML 88Giancarlo Succi

Association classes

• Useful if

– attributes don’t belong to any one class but

to the association

Priority

Access rights

User
Authorized on

Workstation

Authorization

Start session

Directory

IUML 89Giancarlo Succi

Classes and Objects

• As mentioned, a class defines the

structure of a “group” of objects

• It defines:

– name

– attributes

– operations

Task

startDate : Date = 1.1.98
endDate : Date = 1.1.98

setStartDate (d : Date = default)
setEndDate (d : Date = default)

IUML 90Giancarlo Succi

Again on Classes and Objects

Task

startDate : Date = 1.1.98
endDate : Date = 1.1.98

setStartDate (d : Date = default)
setEndDate (d : Date = default)

Assignment 1: Task

startDate = 1.2.98
endDate = 23.2.98

Assignment 2: Task

startDate = 1.2.98
endDate = 23.2.98

Assignment 3: Task

startDate = 1.2.98
endDate = 23.2.98

•Objects show
•Object name

•Class name (optional)

•Attribute value (optional)

<<instanceOf>>
<<instanceOf>>

<<instanceOf>>

IUML 91Giancarlo Succi

Example of Classes and Objects

OrderSalesperson

line2:

Line

CustInfo

line1:

line3:

line2:

line4:

line1:

ace furniture:

order121:

harmon assoc:

order122:

curtisClyde:

Generates

Object diagrams:

Class diagram:

IUML 92Giancarlo Succi

Attributes

• Conceptual: Indicates that

customer have names

• Specification: Customer can tell

you the name and set it

• Implementation: An instance

variable is available

Customer

name
address

creditRating

IUML 93Giancarlo Succi

Difference between

attributes and associations

• Conceptual perspective

– not much of a difference!

– Attributes are single valued (0..1)

• Specification/implementation perspective

– Navigability from type to attribute

– Attribute stores values NOT references

• no sharing of attribute values between instances!

• Often: Stores simple objects

– Numbers, Strings, Dates, Money objects

IUML 94Giancarlo Succi

Operations

• Processes that a class knows to carry out

• Correspond to messages of the class

• Conceptual level

– principal responsibilities

• Specification level

– public messages = interface of the class

• Normally: Don’t show operations that

manipulate attributes

IUML 95Giancarlo Succi

UML syntax for operations

visibility name (parameter list) : return-type-expression

+ assignAgent (a : Agent) : Boolean

– visibility: public (+), protected (#), private (-)

• Interpretation is language dependent

• Nor needed on conceptual level

– name: string

– parameter list: arguments (syntax as in attributes)

– return-type-expression: language-dependent specification

IUML 96Giancarlo Succi

Types of operations

• Query = returns some value without modifying

the class’ internal state

• Modifier = changes the internal state

• Queries can be executed in any order

• Getting & setting messages

– getting: query

– setting: modifier

IUML 97Giancarlo Succi

Aggregation

• Special form of association

• Components are parts of aggregated object

– Car has an engine and wheels as its part

• Aggregation is transitive

• Typical example:

– parts explosion

– organizational structure of a company

IUML 98Giancarlo Succi

Notation for aggregation

Class A

Class CClass B Class C

Class B

Class A

or

IUML 99Giancarlo Succi

Example: Aggregation

Company Unit* Department*

Group

*

Employee

*

works for

IUML 100Giancarlo Succi

Aggregation and composition

• Composition

– Components belong only to one

whole

– Parts live and die with the whole

• cascading delete

• also needed for 1..1 associations

– The players can be aggregated for the

Flames

BUT

they are not killed when the Flames

disappear

Polygon

color

texture
Point

Graphics

Bundle

1 1

1

3..*

color

texture

Aggregation Composition

{ordered}

IUML 101Giancarlo Succi

How to recognize aggregation?

• Question: association or aggregation

– Description “part of” correct?

– Operation on whole affects parts too?

IUML 102Giancarlo Succi

Proposed Exercise

• Develop the class diagram for the case of

the NYSE

IUML 103Giancarlo Succi

Generalization vs. Extension

• Car

– Truck

– Bus

– Station wagon

• Many things in common

• Some differences

Extension Generalization

IUML 104Giancarlo Succi

Instantiation and generalization

1. Shep is a Border Collie.

2. A Border Collie is a Dog.

3. Dogs are Animals

4. A Border Collie is a Breed.

5. Dog is a Species

1+2: Shep is a Dog

1+2+3: Shep is a animal

1+4: Shep is a breed?????

2+5: A Border Collie is a Species?????

Generalization is transitive (is kind of)

Instantiation is not (is instance of)

IUML 105Giancarlo Succi

Concept of generalization

• Class: Implicitly defines a set of objects

– aCar Car = Set of all cars

• Generalization: Subset relation

– Truck Car

Car

Truck

aFordTruck

aMercedes

instantiation

generalization

IUML 106Giancarlo Succi

Class Diagram with Inheritance

Motor vehicle

Car Truck

Mercedes Ford

myFordEscort

<<instantiate>>

IUML 107Giancarlo Succi

How to define classes (revised)?

• Look for nouns in the Use Cases

• Define a class for every noun (+ add others)

• Document the set of rules that determine the set

of objects belonging to the class

• Add associations to model the relations

• Think about the subset relationship to build

generalizations ...

IUML 108Giancarlo Succi

To which class does an object

belong?

• Definition of class membership

– implicit by rules

• rules define condition for being a class member

• attribute values available class can be determined

• terminological logic of AI (subsumption, classifier)

– explicit by enumeration

• instantiation defines class membership

• problem: forbid operations that violate restrictions

IUML 109Giancarlo Succi

Changing classes

• UML gives to an object the possibility to
change its class dynamically (using the
type stereotype)

• This is done in C++ and Java having a

common base class and then changing

the pointed/referenced objects with

suitable constructors

IUML 110Giancarlo Succi

Generalization:

extension & restriction

• Attributes & operations of an ancestor class are

inherited to the subclass

• Extension: adding of new attributes or

operations

• Restriction:Additional restrictions on ancestor

attributes

– circle = Ellipse with equally long axes

– Caution: arbitrary change of size of an axis of the

circle can violate restriction

IUML 111Giancarlo Succi

Perspectives

• Conceptual: Subset relationship

• Specification: Subtype conforms to supertype

interface

• Implementation: Implementation inheritance,

subclassing

BEWARE: Do not subclass when the conceptual

level does not support it -- Use aggregation

(A stack is not a list with some overriding!)

IUML 112Giancarlo Succi

Multiple inheritance

• Class inherits features from several
superclasses

vehicle

land vehicle water vehicle

car amphibian

vehicle
ship

IUML 113Giancarlo Succi

Proposed Exercise

• Define the class of “textbooks” as

derived from the concept of “educational

tool” and of “book”

• Redefine the class avoiding multiple

inheritance

IUML 114Giancarlo Succi

Discussing multiple inheritance

• Advantages:

– closer to human thinking

– higher flexibility for specifying classes

– higher chances for reuse

• Disadvantages:

– loss of clarity which method is executed

– implementation more complicated

– conflict resolution is necessary for multiple
inherited features

IUML 115Giancarlo Succi

Avoiding multiple inheritance

• Basically: question of implementation

• Often the simplest way: restructure

model

• Techniques for restructuring:

– Delegation & aggregation

– Inheritance based on the most important

feature and delegation of the rest

– Generalization based on different

dimensions

IUML 116Giancarlo Succi

Delegation & aggregation

vehicle

land vehicle water vehicle

car amphibian

vehicle
ship

vehicle

VehicleFeature

LandFeature WaterFeature

IUML 117Giancarlo Succi

Most important feature &

aggregation

vehicle

land vehicle big vehicle

car train ship

vehicle

land vehicle

car train

Size

IUML 118Giancarlo Succi

Generalization based on

different dimensions

vehicle

land vehicle

car train

small car

……..

big car small train big train

IUML 119Giancarlo Succi

When to use class diagrams

• Class diagrams are the backbone of OO
development approaches

• Don’t use all the notations

– start with simple stuff

• Take the perspective into account

– not to many details in analysis

– specification often better than implementation

• Concentrate on key areas

– better few up-to-date diagrams than many obsolete
models

IUML 120Giancarlo Succi

Creating a class diagram

• Start simple

– major classes & obvious associations

• Then add

– Attributes

– Multiplicity

– Operations

IUML 121Giancarlo Succi

Rules of thumb

• One class can be part of several diagrams

• Diagrams shall illustrate specific aspects

– Not too many classes

– Not too many associations

– Hide irrelevant attributes/operations

• Several iterations needed to create

diagram

IUML 122Giancarlo Succi

Avoid “Heavy” classes

• Controller does everything

• Other classes: Data encapsulation only
A

B

D

C

HeavyControler

doIt()

DO NOT DO IT!!!!

IUML 123Giancarlo Succi

Proposed Exercise

• Model the classes and the objects in the

Lufthansa web site. The starting point is

the analysis of the use cases.

• [Shorter form] Focus on the frequent

flyer subsystem.

IUML 124Giancarlo Succi

Extraction of Classes in the

Lufthansa example

The user enters the subsystem. To do so it needs to be

a frequent flyer. Inside the subsystem, the user can

access (a) general information about the frequent

flyer program -the reward schema, how to enroll,

how to earn miles with partner companies, and (b)

specific information on her/his miles earned, the

status level. The user can also update her/his

address.

IUML 125Giancarlo Succi

Partial Solution

Reserve a seat

Analyse frequent

flyer status and

related information

Check the time for a flight

Search for a cheap trip

Manage

reservations

and schedules

Manage fares

Customer

<<includes>>

<<includes>>

<<includes>>

<<includes>>

IUML 126Giancarlo Succi

Further Proposed Exercise (1)

Develop an OO Analysis Model for a

system supporting the reservation and

scheduling for taxi drivers that was

discussed in the first day of the course.

IUML 127Giancarlo Succi

Further Proposed Exercise (2)

Stocks Trading Service

• By connecting to the service, a user can connect to
different banks to acquire stock prices. The system also
allows the user to perform some trend and prediction
analysis of prices. If users are interested in ordering some
stocks, they can choose to order them immediately or
with a delay. They can also either bid at a single price or
within a range of prices.

• The system should handle the situation where the
connection to a bank is down, there is a conflict of bids,
or if a particular stock is no longer available.

IUML 128Giancarlo Succi

Further Proposed Exercise (3)

Network Printing Service

• There is a super high-resolution colour laser printer available
on the network for users to print documents to. The service
allows users to preview the output of their document on their
screens. In addition, the user can also view the status of the
printer to see whether there are other documents waiting to be
printed and whether there are any problems with the printer
(such as paper jams, out of paper, low on toner, etc…). In
addition, users can monitor their own print jobs and delay or
delete jobs as they see fit.

• To use this service, a user needs to have the proper
authorization and print quota to print. A system administrator
manages users and their print quotas.

IUML 129Giancarlo Succi

Further Proposed Exercise (4)

Component Brokerage System

• This system essentially acts as a broker for software components. When

developers have completed development of their software, they can deploy them

as reusable software components for others to use. By connecting to the system

over the Internet, these developers can submit their components to the system. An

administrator then reviews the component for its functionality and ways of

connecting to other components, categorizes it, and publishes it in a publicly-

viewable area.

• Customers (such as other developers) can then connect to the public system and

browse/search the components. When they have found something useful, they

can download it for use on their own machine.

• Later, the providers of the components can connect to the system and view the

download statistics of their components. They can also add/remove components

from the system.

IUML 130Giancarlo Succi

Further Proposed Exercise (5)

Bug Tracking System

• Developers use this system to track bugs in an on-going
software project. Developers who find bugs can submit a
report. Other developers can then assign the bug to a
particular developer (especially the developer responsible
for the software module) to fix it. In addition, users can
browse/search all the bugs in the system so far.

• An administrator manages users to restrict access to the
bug tracking system. In addition, the administrator should
also be able to generate reports on the state of the project
in the form of a set of web pages updated daily at 2am.

