
1

Software Engineering

Module 2

Program

Giancarlo Succi



2Giancarlo Succi

Structure

 Portion of the course will be online

 The first three lectures will be:

 19/09/2023 – 11-14, Aula Cremona

 26/09/2023 – 11-14, Aula Cremona

 27/09/2023 – 16-18, Zoom 



3Giancarlo Succi

Please register yourself for 

updates

 Link: http://tiny.cc/QuadernoIS23



4Giancarlo Succi

Program of the module

 Premises

 Introduction to UML

 Design Patterns

 Architectures

 Contextualization in Python / ChatGPT



Premises

Giancarlo Succi 5

 Sub-system and module

 Information hiding

 Coupling 

 Cohesion

 Simplicity



Sub-system and module

• Sub-system

– Performing specific task or subset of 

responsibilities (procedural approach)

– Set of classes (OO approach)

– Example: DBMS and error processing system

• Module

– More language-specific

– Set or library of functions performing specific tasks 

(procedural approach)

– Classes (OO approach)

Giancarlo Succi 6



Information hiding

• Module must hide its internal implementation

• Module accessed only through public interface 

– No direct access to internal data & private methods

– Data accessed through a well defined set of accessor 

methods

• Use abstraction to define modules & interfaces

• Changing implementation (given no change to 

interface) should have no effect on rest of system

Giancarlo Succi 7



Low coupling

• Two modules are loosely coupled

– If interconnections and dependencies are weak

– Satisfying info hiding better than high coupling

• (Increasing) coupling order

– Methods of a module calling another method’s

– Data coupling/control coupling

– Class of a module is a subclass of another module’s

– Module(s) making use of specific features of compiler or calls 
to specific API procedures of the OS

– I/O coupling

– Common coupling

– Content coupling
Avoid!



Cohesion 

• Cohesive module: all its elements directed toward 
performing a single task

• Increasing magnitude of cohesion

– Coincidental: parts grouped together for no reason

– Logical: logically related parts, no other interactions

– Temporal: parts processed within same time limit

– Procedural: control flows from one part to another

– Communicational: parts related by same I/O

– Sequential: output of one is the input of another

– Informational: access to same data structure

– Functional: all elements for one single concept

Best to achieve



Simplicity 

• Build only needed code; don’t try to anticipate 
future needs

• Refactoring

– Restructuring a working system to make it simpler

• Simplicity at different levels

– Method level: short methods with small signatures

– Module level: small public interface

– System level:

• Avoid “middle-man” modules and global variables

• Minimize info and control paths

• Keep inheritance hierarchies small

– At all level: avoid code duplications
Giancarlo Succi 10


