Exploits and Patches

Focus on Attacks

» Software is notorious for having bugs
e Functionality that doesn’t work as intended, or at all
* Crashes that cause unreliability, data loss

* To an attacker, software bugs are opportunities

* Exploits
* Weaponized software bugs
* Use programming errors to an attacker’s advantage

* Typical uses
* Bypass authentication and authorization checks
* Elevate privileges (to admin or root)
* Hijack programs to execute unintended, arbitrary code
* Enable unauthorized, persistent access to systems

Program Execution

A
= . T
; BT e EETASER S 5 C S A

% F = - ! A T N R N R L .
an . U ST 5‘1“\ w g
9 ! L
=

Code and Data Memory
Program Execution
The Stack

Compilers

Compiler

Language- : -
- Language- Machine-Specific ASM
c > speclic =% NeurallR [% | BackEnd > BIN

Computers don’t execute source code

Instead, they execute machine code

Compilers translate source code to machine code
Assembly is human-readable machine code

000000000040052d_<main>:

C Source Code 55 push rbp
-~ . 48 89 e5 mov rbp,rsp
X84:64'n1aChlhe 48 83 ec 20 sub rsp,0x20
code in hexadecimal 89 7d ec mov DWORD PTR [rbp-0x14],edi
#include <stdio.h> SOUe 48 89 75 €0 mov QWORD PTR [rbp-0x20],rsi
40053c: 83 7d ec 01 cmp DWORD PTR [rbp-0x14],0x1
int main(int argc, char** argv) { 400540: 7e 36 jle 400578 <main+0x4b>
? 400542 : c7 45 fc 01 00 00 00 mov DWORD PTR [rbp-0x4],0x1
int ij 400549 eb 23 jmp 40056e <main+Ox41>
if (argc > 1) { 40054b: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
: . s 40054e: 48 98 cdge
for (1 =15 1 < arge; ++1) { 400550 ; 48 8d 14 c5 00 00 00 || lea rdx,[rax*8+0x@]
puts(argv[i]); 400557: 00
} 400558 48 8b 45 €0 mov rax,QWORD PTR [rbp-0x20]
40055c: 48 01 do add rax, rdx
¥ 40055f: 48 8b 00 mov rax,QWORD PTR [rax]
else { 400562 : 48 89 c7 mov rdi,rax
puts("Hello world"); 400565 : e8 a6 fe ff ff call 400410 <puts@plt>
40056a: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
t 40056e€: 8b 45 fc mov eaxXx,DWORD PTR [rbp-0x4]
return 1; 400571: 3b 45 ec cmp eax,DWORD PTR [rbp-0x14]
} 400574 7c d5 jl 40054b <main+Oxle>
400576 j 400582 <main+0x55>
400578 x86-64 edi,ox400614
40057d: 400410 <puts@plt>
400582 assembly eax,0x1
400587 :
400588

Computer Memory

Running programs exists in memory
* Program memory — the code for the program

 Data memory — variables, constants, and a few
other things, necessary for the program
* OS memory — always available for system calls

* E.g.to open a file, execute another program, print to the
screen, etc.

Virtual Memory

Operating System

Data Memory
(Variables)

Program Memory
(Code)

4 GB

Program Memory

vi A W N BB

integer count(string s, character c) {
integer count;
integer pos;

for (pos = 0; pos < length(s); pos

Il
©
(@]
n
+
=
N
—~

if (s[pos] == c) count = count + 1;

}

return count;

void main(integer argc, strings argv) {
count(“testing”, “t”); // should return 2

Memory

Program Memory

High

Low

Program Memory

1:
2:
3:
4:
5:

integer count(string s, character c) {
integer count;
integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

The CPU keeps track of the current
Instruction Pointer (IP)

void main(integer argc, strings argv) {
count(“testing”, “t”); // should return 2

Memory

Program Memory

High

Low

Data Memory

vi A W N BB

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s);
if (s[pos] == c) count = count + 1;

}

return count;

void main(intege ngs argv) A

count(“testing”, “t”); // should return 2

Memory

Data Memory

High

Low

The Stack

* Data memory is laid out using a specific data
structure

e The stack

* Every function gets a frame on the stack
* Frame created when a function is called
* Contains local, in scope variables
* Frame destroyed when the function exits

* The stack grows downward

* Stack frames also contain control flow
information

e More on thisin a bit...

max

stack

heap

data

text

Stack Frame Example

uvi A W N B

string count(string s, character c) {
integer count;
integer pos;
for (pos = 0; pos < length(s); pos = pos + 1) {
if (s[pos] == c) count = count + 1;
}

return count;

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

count() main()

Memory

argv

argc

“testing”

count

Stack grows
downward

V4

High

Low

Memory

Stack Frame Example igh

argv
@: string count(string s, character c) {

integer count; argc

“testing”

—
~—
=
©
(S
A _
—
rasy
c
=
@)
(@

This example is almost correct. But

count
something very important is missing...

uvi A W N B

void main(integer argc, strings argv) {
count (“testing”, “t”); // should return 2 Stack grows
8: 1} downward

<<\/b7 Low

Problem

@: string count(string s, character c) {

IP needs to go back to line

8. But how does the CPU
know that?

ength(s); pos = pos + 1) {

unt = count + 1;

return count;

6: void main(integer argc, strings argv) {

7: count(“testing”, “t”); // should return 2

—
—
=
©
(S
—
—
rasy
c
=
@)
(@

Memory

argv

argc

“testing”

count

High

Low

Memory

Stack Frame Example igh

@: string count(string s, character c) {
integer count;
1: for (pos = 0; pos < length(s); pos = pos + 1) { %g ey
2: if (s[pos] == c) count = count + 1; £ ” _,’
4: return count; — m
5: 1} §
(8

pos

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

Low

Two Call Example

@: string count(string s, character c) {
integer count;

integer pos;

1-4:
5: }
6: void main(integer argc, strings argv) {
7: count(“testing”, “t”); // should return 2
8: count(“elevate”, “e”); // should return 3
9: }

main()

II

count()

Memory

argv

argc

Fwy
t

testing”

o_’

“elevate”

count

High

Low

Recursion Example

integer r(integer n) {
if (n > 0) r(n - 1);

return n;

: void main(integer argc, strings argv) {
r(3); // should return 3

r(2) r(3) main()
‘oo | e 1 e U L DL

r(1)

r(0)

Memory

argv

argc

> >
| o] |
- I -
1] N I
- N

IP =2

-
o1 !
n fjE
N I

o

High

Low

Fun Fact

What is a stack overflow?

Memory is finite
* |f recursion goes too deep, memory is exhausted
* Program crashes
 Called a stack overflow

Review

Running programs exist in memory (RAM)

Assembly code is in program memory
* CPU keeps track of current instruction in the IP register

Data memory is structured as a stack of frames
e Each function invocation adds a frame to the stack
e Each frame contains

= Saved IP to return to
= Local variables that are in scope

Buffer Overflows

gk P Y

4
- 5 Bk o
X - _-"'-Q- Fibin

Lo g ¢ A .
- = v A8 s sk

A Vuinerable Program
Smashing the Stack
Shellcode
NOP Sleds

Memory Corruption

Programs often contain bugs that corrupt stack memory

Usually, this just causes a program crash
* The infamous “segmentation” or “page” fault

To an attacker, every bug is an opportunity
* Try to modify program data in very specific ways

Vulnerability stems from two factors

1. Low-level languages are not memory-safe
2. Control flow information is stored inline with user data on the stack

Threat Model

Attacker’s goal:
* Inject malicious code into a program and execute it
e Gain all privileges and capabilities of the target program (e.g. setuid)

System’s goal: prevent code injection

* Integrity — program should execute faithfully, as programmer intended
* Crashes should be handled gracefully

Attacker’s capability: submit arbitrary input to the program
* Environment variables

Command line parameters

Contents of files

Network data

Etc.

Threat Model Assumptions

%
Compiler is not hardened Operating system is not hardened

No stack canaries No memory randomization (ASLR)
No control flow integrity (CFl) checks

w

: void main(integer argc, strings argv) {

0O N oo v ph~

A Vulnerable Program

./print Hello World
. void print(string s) { World

Hello
string buffer[32];

strcpy (buffer, s); Copy the given string s into the new buffer
puts(buffer);

} Print the buffer to the console/stdout

for (; argc > 9; argc = argc - 1) { /print argl arg2 arg3
print(argv[argc]); arg3
} arg2

} argl

Memory
High

A NOrmaI Examp What if the data in

string s is longer

than 32 characters?
@: void print(string s
// only holds 32 characters, max —
string buffer[32]; -g m
1: strcpy(buffer, s); strcpy() does not £
2: puts(buffer); check the length of
3:) the input! g
» S Data from argv
4: void main(integer argc, strings argv) {
5: for (; argc > 0; argc = argc - 1) {
6 print(argv[argc]);
7: }
8: }

Low

Memory

Crash

High

Saved IP is destroyed!

argv

@: void print(string s) {
// only holds 32 characters, max argc
string buffer[32];

1: strcpy(buffer, s);

2: puts(buffer);

w
-

Data from argv

Program crashes :(
void main(i

for (; argc > 0; argc = argc - 1) {

print(argv[argc]);

00 N oo v H

Low

Never use gets(). Because it is impossible
to tell without knowing the data in advance

how many characters gets() will read, and
because gets() will continue to store char-
acters past the end of the buffer, it is ex-
tremely dangerous to use. It has been used
to break computer security. Use fgets() in-
stead.

Smashing the Stack

Buffer overflow bugs can overwrite saved instruction pointers
e Usually, this causes the program to crash

Key idea: replace the saved instruction pointer
* Can point anywhere the attacker wants
e But where?

Key idea: fill the buffer with malicious code

« Remember: machine code is just a string of bytes
* Change IP to point to the malicious code on the stack

Memory

Exploit v1
p :1000
@: void print(string s) {
// only holds 32 characters, max — _ +992
string buffer[32]; -% m :988
1: strcpy(buffer, s); £ _ .984
2: puts(buffer);
3:) =
S Malicious code
4: void main(integer argc, strings argv) { . 952
5: for (; argc > 0; argc = argc - 1) {
6: print(argv[argc]);
7: }
8: }

Malicious Code

The classic attack when exploiting an overflow is to inject a payload

* Sometimes called shellcode, since often the goal is to obtain a privileged shell
e But not always!

There are tools to help generate shellcode
* Metasploit, pwntools

Example shellcode:
{

exec(“/bin/sh”);

Challenges to Writing Shellcode

Compiled shellcode often must be zero-clean
e Cannot contain any zero bytes
* Why?
* In C, strings are null (zero) terminated
 strcpy() will stop if it encounters a zero while copying!

Shellcode must survive any changes made by the target program
* What if the program decrypts the string before copying?
 What if the program capitalizes lowercase letters?
» Shellcode must be crafted to avoid or tolerate these changes

Memory

argv

Hitting the Target

Address of shellcode must be guessed exactly
* Must jump to the precise start of the shellcode m

However, stack addresses often change ‘

* Change each time a program runs

Challenge: how can we reliably guess the Shellcode
address of the shellcode?

e Cheat!

* Make the target even bigger so it’s easier to hit ;)

11000
: 896

:892

:888

: 884

: 856

Hit the Ski Slopes

Most CPUs support no-op instructions

* Simple, one-byte instructions that don’t do anything
* On Intel x86, opcode 0x90 is the NOP

Key idea: build a NOP sled in front of the shellcode

e Acts as a big ramp

* If the instruction pointer lands anywhere on the ramp, it will execute NOPs
until it hits the shellcode

Exploit v2

:1000
: 996

@: void print(string s) {
// only holds 128 characters, max — +992
string buffer[128]; -% :988
1: strcpy(buffer, s); £ .984

2: puts(buffer);

3: '} Malicious code
4: void main(integer argc, strings argv) { ?

5: for (; argc > 0; argc = argc - 1) { S

6: print(argv[argc]); NOP sled

7: }

8: }

: 856

Stack Canaries

o Compiler adds special sentinel values onto the stack before
each saved IP

o Canary is set to a random value in each frame
o At function exit, canary is checked
o If expected number isn’t found, program closes with an error

Memory

Stack Canaries
: 1000
@: void print(string s) { _ . 996
1: __set_stack _canary(random());
2: string buffer[32]; — _ +992
3: strcpy(buffer, s); Canary value '§ m :988
4: puts(buffer); has changed, _ 1980
5: __check_stack_canary() 50 exit()
6: }
E "
void main(integer argc, strings argv) { H Malicious code 948
for (; argc > 0; argc = argc - 1) {

9: print(argv[argc]);
10: }
11: }

Non-executable Stacks

Modern CPUs set stack memory as read/write, but no eXecute
Prevents shellcode from being placed on the stack

Memory

Non-Executable Stack
:1000

@: void print(string s) {

// only holds 32 characters, max — _ +992

string buffer[32]; -% m :988
1: strcpy(buffer, s); E _ .984
2: puts(buffer);
3: } =

S Malicious code

4: void main(integer argc, strings argv) { 952
5: for (; argc > 0; argc = argc - 1) {
6: print(argv[argc]);
7: }
8: }

Address-space Layout Randomization (ASLR)

Every time a program is loaded into memory, the location of code and
data is changed

* Makes it harder for the attacker to guess the destination of the buffer on the
stack

Doesn’t prevent exploitation — just makes exploitation harder
* In other words, increases the

Supported by all modern operating systems
* But works best when the size of memory is very large

Other Targets and Methods

Existing mitigations make attacks harder, but not impossible

Many other memory corruption bugs can be exploited
e Saved function pointers
* Heap data structures (malloc overflow, double free, etc.)
* Vulnerable format strings
 Virtual tables (C++)
 Structured exception handlers (C++)

No need for shellcode in many cases
 Existing program code can be repurposed in malicious ways
* Return to libc
e Return-oriented programming

How do Exploits Exist?

Exploits are weaponized program bugs

Violate programmer assumptions about data
* Size
* Structure

* Frequency
* Unexpected special characters and delimiters

Cause programs to behave unexpectedly/maliciously
» Authentication and authorization bypass
* Execute arbitrary code
* Violate integrity and confidentiality

Lesson 1:

Never trust input from
the user

Lesson 2:

Never mix code and
data

<html|>
<head></head>
<body>

<p>This Iis my page.</p>

<ScCript>

document.cookie
</script>

</body>

</html>

gocume

e Stack may mix data and code

e Attacker injects “text” which is
interpreted as code

Malicious code

* Web pages mix data and code NOP sled

* Attacker injects “text” which is

interpreted as code

:1000
:996

:992

1988

: 984

: 856

Lesson 3:

Use the best tools at
your disposal

Tools for More Secure Development

Choose a memory safe programming language
e C/C++ are not memory safe
* Java and C# are somewhat better, but virtual machine may be vulnerable
* Scripting languages offer more safety
* Rust is specifically designed for security

Choose well-maintained, security conscious frameworks
 Wordpress are dumpster fires

* Django, Rails, and other modern frameworks offer:
e Secure session management and password storage
* Obiject relational mappers (no need to write SQL)
* Built-in output sanitization by default
e Cross-Site Request Forgery (CSRF) mitigation by default

Lesson 4:

Awareness and
Vigilance

Vulnerability Information

You can’t mitigate threats you don’t know

seclists.org has two of the most comprehensive mailing lists
* Bugtraqg
* Full Disclosure

Vulnerability databases

 Common Vulnerabilities and Exposures (CVE) m\‘/__.f
° -
"

* NIST National Vulnerability Database (NVD)
* Adds risk scores to CVE reports
e Carnegie Mellon University CERT (

https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPubli
shedVulnerabilityNotes)

https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPublishedVulnerabilityNotes
https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPublishedVulnerabilityNotes

@T | 4= Software Engineering Institute | Carnegie Mellon University
Vulnerability Notes Database

Advisory and mitigation information about software vulnerabilities

DATABASE HOME

SEARCH REPORT A VULNERABILITY HELP

Overview

CVE-2017-5754 — Meltdown
CVE-2017-5753 — Spectre vl

The Vulnerability Notes Database provides information about software vulnerabilities. Vulnerability Notes include
summaries, technical details, remediation information, and lists of affected vendors. Most Vulnerability Notes are the
result of private coordination and disclosure efforts. For more comprehensive coverage of public vulnerability reports|
consider the National Vulnerability Database (NVD). + Read More

Recent Vulnerability Notes

CVE-2017-5715 — Spectre v2

blished e Date Public

15 Feb 2018 VU#940439 Quagga bgpd is affected by multiple vulnerabilities Multiple CVEs
Date Updated e« CVSS Score
01 Feb 2018 VU#319904 Pulse Secure Linux client GUI fails to validate SSL certificates CVE-2018-6374
03 Jan 2018 VU#584653 CPU hardware vulnerable to side-channel attacks Multiple CVEs
12 Dec 2017 VU#144389 TLS implementations may disclose side channel information via ... Multiple CVEs Report a Vulnerability
29 Nov 2017 VU#113765 Apple MacOS High Sierra disabled account authentication bypass CVE-2017-13872
Please use the Vulnerability
21 Nov 2017 VU#681983 Install Norton Security for Mac does not verify SSL certificates CVE-2017-15528 ~_! Reporting Form to report a
vulnerability. Alternatively, you can send us
17 Nov 2017 VU#817544 Windows 8 and later fail to properly randomize every application... Unknown email. Be sure to read our vulnerability
disclosure policy.
15 Nov 2017 VU#421280 Microsoft Office Equation Editor stack buffer overflow CVE-2017-11882 I
03 Nov 2017 VU#739007 |EEE P1735 implementations may have weak cryptographic prot... Multiple CVEs Connectwith iis
02 Nov 2017 VU#446847 Savitech USB audio drivers install a new root CA certificate CVE-2017-9758

Subscribe to our feed

Lesson 5:
Patch!

On Vulnerabilities

0-day vulnerabilities are a serious concern
* Exploits for bugs that are undisclosed and unpatched
* Very hard to detect and prevent attacks
* Extremely valuable for attackers and three letter agencies

But most successful attacks involve old, patched vulnerabilities
* Exploit kits bundle common attacks together, automate breaches
* Usable by unsophisticated attackers

Examples:
* Drive-by download attacks against browsers
 Worms that target vulnerable web servers and service
* Scanners that looks for known SQL injection vulnerabilities

Why?

People Don’t Patch

Key problem: people don’t patch their systems
* Many applications do not automatically update
» System administrators delay patches to test compatibility with software
* Users are unaware, don’t bother to look for security updates

Example: Equifax
* |nitial breach leveraged a vulnerability in Apache Struts

* CVE-2017-9805
* Bug had been known and patch available for two months :(

Former Equifax CEO says breach boiled down to one
person not doing their job

Sarah Buhr (@sarahbuhr

Everybody Should Patch

Use systems that automate updates
* Google Play Store
* iOS App Store
e Aptitude (apt) and Red Hat Package Manager (rpm or yum)
* Chrome, Firefox
* Windows 10

Avoid systems that do not automate or fail to update regularly
* Android on most phones :(

* Most desktop software on Windows
 Embedded devices (NATs, loT, etc.)

The Ticking Clock

The good: white hats often find and report
vulnerabilities in private

e Responsible Disclosure

* Vender develops and distributes a patch...

» Before attackers know about the vulnerability

The bad: attackers reverse engineer patches
* Figure out what vulnerabilities were patched
* Develop retrospective exploits

A race against time
* Patches enable the development of new exploits!
* Patches should be applied as soon as possible!

Responsibilities of Developers

If you develop software, you are responsible for the security of users
* Important if you develop desktop software/apps
* Even more important if you develop libraries for other developers

Commit to providing security and privacy for your users
* Duty of care, virtue ethics

Define a security process

* Email and website for people to submit vulnerabilities
* Consider a bug bounty program (e.g. through HackerOne)
* Post legal policies to indemnify security researchers acting in good faith

* Mailing list to inform users about security issues
* Serious problems should be reported to Full Disclosure, Bugtraqg, CVE

Distribute patches in a timely manner

Many slides courtesy of Christo Wilson: https://cbw.sh/ and Dr.
Davide Berardi (https://it.linkedin.com/in/davide-berardi-b1609796)

https://cbw.sh/
https://it.linkedin.com/in/davide-berardi-b1609796

	Diapositive 1 Exploits and Patches
	Diapositive 2 Focus on Attacks
	Diapositive 3 Program Execution
	Diapositive 4 Compilers
	Diapositive 5
	Diapositive 6 Computer Memory
	Diapositive 7 Program Memory
	Diapositive 8 Program Memory
	Diapositive 9 Data Memory
	Diapositive 10 The Stack
	Diapositive 11 Stack Frame Example
	Diapositive 12 Stack Frame Example
	Diapositive 13 Problem
	Diapositive 14 Stack Frame Example
	Diapositive 15 Two Call Example
	Diapositive 16 Recursion Example
	Diapositive 17 Fun Fact
	Diapositive 18 Review
	Diapositive 19 Buffer Overflows
	Diapositive 20 Memory Corruption
	Diapositive 21 Threat Model
	Diapositive 22 Threat Model Assumptions
	Diapositive 23 A Vulnerable Program
	Diapositive 24 A Normal Example
	Diapositive 25 Crash
	Diapositive 26
	Diapositive 27 Smashing the Stack
	Diapositive 28 Exploit v1
	Diapositive 29 Malicious Code
	Diapositive 30 Challenges to Writing Shellcode
	Diapositive 31 Hitting the Target
	Diapositive 32 Hit the Ski Slopes
	Diapositive 33 Exploit v2
	Diapositive 34 Mitigating Buffer Overflows
	Diapositive 35 Stack Canaries
	Diapositive 36 Stack Canaries
	Diapositive 37 Non-executable Stacks
	Diapositive 38 Non-Executable Stack
	Diapositive 39 Address-space Layout Randomization (ASLR)
	Diapositive 40 Other Targets and Methods
	Diapositive 41 Takeaways
	Diapositive 42 How do Exploits Exist?
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47 Tools for More Secure Development
	Diapositive 48
	Diapositive 49 Vulnerability Information
	Diapositive 50
	Diapositive 51
	Diapositive 52 On Vulnerabilities
	Diapositive 53 People Don’t Patch
	Diapositive 54 Everybody Should Patch
	Diapositive 55 The Ticking Clock
	Diapositive 56 Responsibilities of Developers
	Diapositive 57

