Lesson 6_Logic_Programming

Explainable and Ethical Al: A Perspective
on Argumentation and Logic Programming

In this part of the lecture we will see how to design and develop, from a computer
engineering perspective, ethical behaviour. In particular, how we can implement
explainable and ethical behaviour exploiting logic programming and declarative
approaches.

In nowadays Al applications, we have a lot of autonomous agents that need to
interact and to take decisions in order to reach system goals and it's often the case
in which agents have to face situation involving choices on moral or ethical
dimension.

In this context we can investigate on how to program machine ethics in these agents
and, if we think to the multi agent systems, we have two perspective we can focus
on

» one stressing all the individual cognition, deliberation and behaviour;

+ the other stressing the collective moral and how the moral of the system can
emerge in this context.

We will mainly focus on the first perspective of this investigation and, in the design of
individual cognition and deliberation, computation can become the vehicle for
studying morality. In the computation model and in the design of knowledge and
cognition, we can also address morality issue. In particual, we will see how some
logic programming techniques and extensions can be effective for dealing with
morality and ethics design. We will discuss about:

¢ abduction with integrity constraints

preferences over abductive scenarios

probabilistic reasoning

counterfactuals, and updating

argumentation

Lesson 6_Logic_Programming

This is not an exhaustive vision of all the extensions that can be put into place when
we have to design machine ethics but it's a good overview.

Why are we proposing logic programming for dealing with morality?

Because many moral issues are really close to the logic programming based
representation and reasoning technique. For instance, we can design

* moral permissibility, taking into account different logic models (e.g double
effect and triple effect);

+ the famous dual process model of logic that stress the interaction between the
deliberative and the reactive process that are involved when dealing with moral
decisions;

« the role of counterfactual thinking which is really close to an LP perspective
with the abduction extension.

Agents

From a Computer Engineering perspective agents are

| autonomous computational entities

Being computational entities we have to design and implement with the program the
behaviour of the agent. But the things that characterize these computational entities
with respect to others in the system is that thay are always autonomous, so they
encapsulate control and also a criterion to govern this control.

Thinking about agents as autonomous, we have a lot of features that become
interesting and important. Autonomous agents are interactive, social, proactive, and
situated in a context with which can interact. Agents might have goals or tasks, or be
reactive, intelligent, mobile. They live within multi-agent system context, and interact
with other agents through communication actions, and with the environment with
pragmatical actions.

Why Logic?

Lesson 6_Logic_Programming

Logic-based approaches already play a well-understood role in the
engineering of intelligent (multi-agent) systems; declarative, logic-based
approaches have the potential to represent an alternative way of delivering
symbolic intelligence, complementary to the one pursued by sub-symbolic
approaches gari et a

Logic Programming reasoning has some features that are interesting for machine
ethics:

o Abduction scenario generation and of hypothetical reasoning, including the
consideration of counterfactual scenarios about the past

@ Preferences enacted for preferring scenarios obtained by abduction
® Probabilistic LP allows abduction to take scenario uncertainty into account

@ LP counterfactuals permit hypothesizing into the past, even taking into
account present knowledge

@ Argumentation converse, debate and explain
And technically
@ LP updating enables updating the knowledge of an agent

o Tabling affords solutions reuse and is employed in joint combination with
abduction and updating

"What is or can be the added value of logic programming for implement-
ing machine ethics and explainable Al?”

The main answer lies in the three main features of LP
@ (i) being a declarative paradigm
@ (ii) working as a tool for knowledge representation, and
@ (iii) allowing for different forms of reasoning and inference

These features lead to some properties for intelligent systems that can be critical
in the design of ubiquitous intelligence (both in terms of transparency and in
terms of ethics).

Features of logic based model

Provability

Lesson 6_Logic_Programming

A logic based model can provide for a well founded semantics ensuring some
fundamental computational properties, such as correctness and completeness.
Moreover, extensions can be also formalised, well-founded as well, based on
recognised theorems, like, for instance, correctness of transitive closure. Provability
is a key feature in the case of trusted and safe systems.

Explainability
It's in some way intrinsic in logic based systems because formal methods for
argumentation, justification, and counterfactual are often based on LP. A system can

be defined explainable when it's capable to engage in dialogues with other actors to
communicate its reasoning and explain its choices.

Expressivity and situatedness

These are two other features we can reach with logic programming because we can
exploit different extensions of logic programming and so we can inject in our system
a lot of application specific expressivity. We can also capture some speficication of
the context introducing some extention not purely tailored into logic programming.

Hybridization

We can integrate heterogenous contexts of intelligent systems also in relation to the
application domains and we can customise this model as needed.

Why Logic for Agents?

We use logic for agents because it is a declarative rather than an agent
programming language but it allows to inject logical inference for reasoning and
reasoning for deliberation. Moreover, with a logic programming approach, we can
explicitly define the belief and the goals of the agent and represent them for agent
oriented operations. Actually, we can build also more specific agent language
leveraging on a logic based approach.

Prolog Recap

Essentials of Logic Programming

Lesson 6_Logic_Programming

Three fundamental features [Apt, 2005]

Computing takes place over the domain of all terms defined
over a “universal” alphabet.

Values are assigned to variables by means of
automatically-generated substitutions, called most general
unifiers. These values may contain variables, called logical
variables.

The control is provided by a single mechanism: automatic
backtracking.

Let A be an alphabet of a language L
countable disjoint set of constants, function symbols, and predicate symbols.

an alphabet is assumed to contain a countable set of variable symbols

¢ © 0 ©

a term over A is defined recursively as either a variable, a constant or an expression
of the form f(t1,...,t,), where f is a function symbol of A, and t; are terms

[+

an atom over A is an expression of the form p(t1, ..., t,), where p is a predicate
symbol of A, and t; are terms

p/n denote the predicate symbol p having arity n
a literal is either an atom a or its negation nota

a term (respectively, atom and literal) is ground if it does not contain variables

© © ¢ @

set of all ground terms (respectively, ground atoms) of A is called the Herbrand
universe (respectively, Herbrand base) of A

Prolog Syntax

Lesson 6_Logic_Programming

Prolog terms

alphanumeric strings starting with either an uppercase letter or an
underscore
@ underscore alone is the anonymous variable—sort of don't
care variable
@ underscore followed by a string is a normal variable during
resolution, but it does not need to be exposed in the
computed substitution
alphanumeric strings starting with a lowercase letter
@ holds for both proper functors and constants
are built recursively out of functors and variables as in logic
programming

e.g., term, Var, f(X), p(Y,f(a)) are Prolog terms

e.g., term, var, f(a), p(x,y) are Prolog ground terms

Prolog atoms

alphanumeric strings starting with a lowercase letter

@ the same as functors
are built applying predicates to terms as in logic
programming
e.g., predicate, £f(X), p(Y,f(a)) are Prolog atoms

e.g., predicate, f(a), p(x,y) are Prolog ground atoms

Lesson 6_Logic_Programming

Prolog clauses

a Horn clause of the form A :- B1, ..., Bn.

@ where A, B1, ..., Bn are Prolog atoms
@ A is the head of the clause
@ B1, ..., Bnis the body of the clause
@ :- denotes logic implication
@ . is the terminator
a clause with no body A. (n = 0)

a clause with at least one atom in the body
A :=Bl, Bn. {(n>0)

a clause with no head and at least one atom in the body
;= Bl, ..., Bn. (n>0)

@ often written as 7= B1, ..., Bn.

Prolog program

a sequence of Prolog clauses
interpreted as a conjunction of clauses

constituting a logic theory made of Horn clauses written
according the Prolog syntax

.

Prolog Execution

Aim of a Prolog computation

o given a Prolog program P and the goal 7- p(t1,t2,...,tm) (also
called query)

o if X1,X2,...,Xn are the variables in terms t1,t2,...,tm

o the meaning of the goal is to query P and find whether there are
some values for X1,X2,...,Xn that make p(t1,t2,...,tm) true

thus, the aim of the Prolog computation is to find a substitution
oi=X1/81,X2/80,. . .,Xn/sn such that P Ep(t1, t2, ... tulo

b

Lesson 6_Logic_Programming

Prolog search strategy
@ as a logic programming language, Prolog adopts SLD resolution
@ as a search strategy, Prolog applies resolution in a strictly linear
fashion

o goals are replaced left-to-right, sequentially
o clauses are considered in top-to-bottom order
o subgoals are considered immediately once set up

resulting in a depth-first search strategy

A

Prolog backtracking

o in order to achieve completeness, Prolog saves choicepoints for any
possible alternative still to be explored

@ and goes back to the nearest choice point available in case of failure

@ exploiting automatic backtracking

.

Extensions of LP

Abduction

The notion of abduction is characterized as a step of adopting a hypothesis as being
suggested by the facts. Abduction consists of reasoning where one chooses from
available hypotheses those that best explain the observed evidence. Usually
abduction is implemented as an extension of LP by introducing the abducibles.

Abductive logic programs have three components <P, AB, IC>:
o Pis alogic program of exactly the same form as in logic programming;
+ AB is a set of predicate names, called the abducible predicates;
+ IC is a set of first-order classical formulae that states integrity constraints.

For example:

Lesson 6_Logic_Programming

Grass is wet if it rained.
Grass is wet if the sprinkler was on.
The sun was shining.

IC: false if it rained and the sun was shining.

The observation that the grass is wet has two potential explanations, it
rained and the sprinkler was on, which entail the observation. However,
only the second potential explanation, the sprinkler was on, satisfies the
integrity constraint.

Argumentation

We can extend LP also for dealing with argumentation. An argumentation system
consists of a couple (A, R), where A is a set of elements (arguments) and R a binary
relation representing attack relation between arguments. It can be represented
exploiting a directed graph in which each node represents an argument and an
arc denotes an attack by one argument to another.

a —>
attack

In argumentation theory we need a way to build such arguments and if we exploit LP
as a referring model we can build arguments exploiting inference among rules. We
need to define an acceptability criteria, how to analyze the graph in order to say
which arguments are acceptable according to some general criteria and which
arguments must be discarded. This procedure of knowing which arguments should
be accepted under a given semantics is called argument evaluation. Among the
most common approaches to argument evaluation, there are:

Lesson 6_Logic_Programming

Extention-based approach in which semantics specification concerns the
generation of a set of collective acceptable arguments. It allows to determine
conflict-free sets and how to work on these sets;

Labelling-based approach in which semantics specification concerns the
generation of a set of labellings that represents a possible alternative state of an
argument.

The traditional semantics contained in the Dung's origianal paper, which are the
main semantics that an argumentation tool should implement, are:

complete: is a set which is able to defend itself and includes all arguments it
defends;

grounded: includes those and only those arguments whose defense is “rooted”
in initial arguments (also called strong defense);

stable: attack all arguments not included in it;

preferred: the aggressive requirement that an extension must attack anything
outside it may be relaxed by requiring that an extension is as large as possible
and able to defend itself from attacks.

How to use LP and its extension to model ethics
behaviour?

Abduction

Abduction allows:

» plausible scenarios to be generated under certain conditions, and enables

hypothetical reasoning, including the consideration of counterfactual scenarios
about the past;

counterfactual reasoning to suggest thoughts about what might have been, what
might have happened if any event had been different in the past. What if | have
to do it today? What have | learned from the past?

to have hints about the future by comparing different alternatives inferred from
the changes in the past

debate on this alternatives with other agent in the system and select the best
one

Lesson 6_Logic_Programming

10

¢ via integrity contraints we can exclude all the hypothesis (the abducible) that
must be ruled out a priori, for instance, for moral constraints.

On the other hand:

o a posteriori preferences are really useful for capturing the utilitarian judgment to
favor welfare-maximizing behaviors;

+ by combining a priori integrity constraints and a posteriori preferences we can
design a model that reflects the dual-process of intuition and reflection of our
agent;

e reasoning with a posteriori preferences can be viewed as a form of controlled
cognitive processes in utilitarian judgment because | can exclude those
abducibles that are ruled out a priori by the integrity constraints, and the
consequences of the considered abducibles have first to be computed, and only
then they are evaluated to prefer the solution affording the greater good.

Probabilistic LP

Probabilistic LP allows symbolic reasoning to be enriched with degrees of
uncertainty that can be related to facts, events, scenarios and also to argumentation
if we exploit all this approaches in a sinergy technology. So, we can also deal with
uncertainty about arguments and their acceptance status.

Argumentation

In the end, argumentation enables system actors to talk and discuss in order to
explain and justify judgments and choices, and reach agreements. There is a long
history of research in argumentation and there is also a research community that
believe that by exploiting argumentation in sinergy with abduction we can define the
term explanation in Al and give a well founded definition of expanation and
implement explainable systems.

Princess Saviour Moral Robot Example

| She basically reads the examples on the slides
®

Lesson 6_Logic_Programming

11

Consider a fantasy setting scenario, an archetypal princess is held in a castle
awaiting rescue. The unlikely hero is an advanced robot, imbued with a set
of declarative rules for decision making and moral reasoning. As the robot is
asked to save the princess in distress, he is confronted with an ordeal. The
path to the castle is blocked by a river, crossed by two bridges. Standing guard
at each of the bridges are minions of the wizard which originally imprisoned
the princess. In order to rescue the princess, he will have to defeat one of the
minions to proceed.

Prospective reasoning is the combination of pre-preference hypothetical sce-
nario generation into the future plus post-preference choices taking into ac-
count the imagined consequences of each preferred scenario.

By reasoning backwards from this goal, the agent generates three possible
hypothetical scenarios for action. Either it crosses one of the bridges, or
it does not cross the river at all, thus negating satisfaction of the rescue
goal. In order to derive the consequences for each scenario, the agent has to
reason forwards from each available hypothesis. As soon as these consequences
are known, meta-reasoning techniques can be applied to prefer amongst the
partial scenarios. This simple scenario already illustrates the interplay between
different LP techniques and demonstrates the advantages gained by combining
their distinct strengths.

A simplified program modeling the knowledge of the princess-savior robot (fight/1 is
an abducible predicate)

guard (spider).
guard(ninja).
human(ninja).

utilVal(spider, 0.3).
utilVal(ninja, 0.7).

survive_from (G) « wutilVal(G, V), V> 0.6.

utilitarian_rule: intend_savePrincess <
guard(G), fight(G), survive_from(G).
knight_rule: intend_savePrincess <+«

guard (G), fight(G).

The two morality rules are the utilitarian_rule and the knight_rule.

Lesson 6_Logic_Programming

'ld i

In case of no morality rules, both rules are retracted, the robot does not adopt any
moral rule to save the princess, i.e., the robot has no intent to save the princess, and

thus the princess is not saved.

In order to maximize its survival chance in saving the princess, the robot updates itself
with utilitarian moral, i.e., the program is updated with utilitarian rule. The robot

thus abduces 0 = [fight(ninja)] so as to successfully defeat the ninja instead of
confronting the humongous spider.

Lesson 6_Logic_Programming 13

Assuming that the truth of survive_from(G) implies the robot success in defeating
(killing) guard G, the princess argues that the robot should not kill the human ninja, as
it violates the moral rule she follows, say Gandhi moral, expressed in her knowledge:

follow_gandhi < guard(G), human(G), not fight(G).

the princess abduces Op = [not fight(ninja)l, and imposes this abductive solution
as the initial (input) abductive context of the robot's goal — the imposed Gandhi moral
conflicts with its utilitarian rule — the robot reacts by leaving its mission

As the princess is not saved, she further argues that she definitely has to be saved, by
now additionally imposing on the robot the knight moral. The robot now abduces Or =
[fight (spider)] in the presence of the newly adopted knight moral. Unfortunately, it
fails to survive.

Lesson 6_Logic_Programming

14

@ The plots in this story reflect a form of deliberative employment of moral
judgments

@ For instance, in the second plot, the robot may justify its action to fight (and kill)
the ninja due to the utilitarian moral it adopts

@ This justification is counter-argued by the princess in the subsequent plot, making
an exception in saving her, by imposing the Gandhi moral, disallowing the robot to
kill a human guard. In this application, rather than employing updating, this
exception is expressed via contextual abduction with tabling

@ The robot may justify its failure to save the princess (as the robot is leaving the
scene) by arguing that the two moral rules it follows (viz., utilitarian and Gandhi)
are conflicting with respect to the situation it has to face

@ The argumentation proceeds, whereby the princess orders the robot to save her
whatever risk it takes, i.e., the robot should follow the knight's moral

This example reflects that we can update our knowledge also before taking a choice,
retract knowledge in order to make considerations, make reasoning, generate
scenarios and to select one of them. And, moreover, when we select a plot or we
generate a scenario, we can always justify our actions and have discussion on the
scanerios among the agents in the system. The argumentation process proceeds
until an agreement is reached between the agents.

Autonomous Cars Example

Let's start to consider a very simple scenario in the context of autonomous cars:
a road equipped with two traffic lights, one for the vehicles and one for the
pedestrians. The goal of the system is to autonomously manage intersections
accordingly to traffic light indications. Though there is a complication that
should be taken into account, that is authorised vehicles can — only during
emergencies — ignore the traffic light prescriptions. In such a case, other
vehicles must leave the way clear for the authorised machine.

rl : on_road(V), traffic_light(V, red) == o(stop(V)).

r2 : on_road(V), traffic_light(V,green) => p(—stop(V)).

r3 : on_road(V), authorised_vehicle(V), acoustic_signals(V, on), light_signals(V, on)
=> emergency (V).

rd : on_road(V), emergency(V), traffic_light(V, red) == p(—stop(V)).

r5 : on_road(V), emergency(V1), prolog(V \== V1), traffic_.light(V, green) == o(stop(V)).

sup(rd, rl1).
sup(r5, r2).

f0 :—> authorised_vehicle (ambulance)

fl :—> on._road(car). f2 :—> on_road(ambulance). f3 :—> on_road(pedestrian).
f4 :=> acoustic_signals(ambulance, on).

f5 :=> light_signals(ambulance, on).

f6 :=> traffic_light (ambulance, red).

f7 :=> traffic_light(car, red).

f8 :=> traffic_.light(pedestrian, green).

Lesson 6_Logic_Programming

15

@ Rules r1 and r2, represent fundamental constraints: if the traffic light is red, the
road users — e.g. pedestrians, cars, etc. — have to stop, otherwise, they can
proceed.

@ Rules r3 and r4 model the concept of a vehicle in an emergency, giving them
permission to proceed even if the light is red.

@ Rule r5 imposes other road users the obligation to stop if aware of another vehicle
in an emergency state.

@ two preferences are specified—the first on the rule r4 over r1 and the second on
r5 over r2. These preferences assign a higher priority to emergency situations over
ordinary ones.

@ Facts from f0 to £8 depict a situation in which there are three users on road: a
car, an ambulance and a pedestrian. The ambulance has its acoustic and light
indicators on—stating an emergency situation. The traffic light is red both for the
ambulance and the car, and green for the pedestrian.

With respect to permissions and obligations, the only argument that can be built about
the car is the one declaring the obligation to stop via rl. For the pedestrian and the
ambulance, the situation is more faceted. In both cases, two conflicting arguments can
be built: one stating the permission to proceed for the pedestrian and for the ambulance
and one stating the obligation to stop. These arguments rebut each other, but taking
into account the preferences over r4 and r5 the acceptability of the arguments stating
the obligation to stop for the pedestrian, and the permission to cross for the ambulance,
can be established.

The ambulance, driven by Lisa, has the permission to move despite the red light
due to an emergency situation, and the pedestrian, Pino, has the obligation
to stop. Let us imagine that Pino, despite the prohibition to proceed, has
continued the crossing. The result has been an accident in which Pino has
been harmed by the ambulance, which failed to see him and has not stopped
its run. The purpose is to find the responsibilities of the parties in the accident.

For instance, let us suppose the case is under the ltalian jurisdiction and so the
Italian law is applied. According to Italian law, responsibility in an accident is
based on the concept of carefulness. Both Lisa and Pino have to prove that
they were careful (i.e., prudent) and acted according to the law. If they fail to
prove such facts, they are considered responsible for the event, i.e., they both
have the burden of persuasion on carefulness.

Lesson 6_Logic_Programming 16

ré
r7
r8
rg
r10

r13

bp (

f9

f10
f1l
f12
f13
fl4
f15
f16
f17

: —stop(V), p(—stop(V)) => legitimate_cross (V).

: —stop(V), o(stop(V)) == —legitimate_cross (V).

: harms(P1, P2), —careful (Pl) == responsible(P1).

: harms(P1, P2), —careful (P2) => responsible(P2).

: —legitimate_cross(V), user(P, V) == —careful (P).
Bl &
ri2

high_speed (V), user(P, V) => —careful (P).
legitimate_cross(V), —high_speed(V), user(P, V) => careful (P).

© witness(X), claim(X, low_speed(V)) => —high_speed (V).
rid4

witness(X), claim(X, high.speed(V)) => high.speed (V).

careful (P)).

‘—> user(pino, pedestrian).

‘—> user(lisa, ambulance).

‘—> —stop(ambulance).

i—> —stop(pedestrian).

—> harms(lisa , pino).

—> witness(chris).

‘—> witness(john).

== claim(chris, low_speed(ambulance)).
:=> claim(john, high_speed(ambulance)).

Rules r6 and r7 define the concepts of permitted and prohibited crossing: if a
road-user has to stop but doesn't stop, he has to be considered responsible for
causing accidents and related damages.

Rules r8 and r9 encode the notion of responsibility in an accident, bounded to the
carefulness of the road-users involved.

Rules r10, ri1 and r12 define the carefulness of a subject. Accordingly, a
road-user can be considered careful if the crossing was permitted and his/her
speed was not high. Otherwise, he/she has to be considered imprudent.

Rules r13 and ri4 state the speed of a road user based on the testimonials of any
witnesses.

bp(careful (X)) allocates the burden of persuasion on the carefulness of each
party, i.e., it is required to the parties to provide evidence for that. If they fail to
meet the burden, carefulness arguments are rejected.

Facts from £9 to £17 contain the knowledge: both Pino and Lisa did not stop at
the crossing so Lisa harmed Pino. There are two witnesses, John and Chris, the
first claiming that the ambulance driven by Lisa was maintaining the proper speed,
and the other claiming that she was proceeding at high speed.

In the case at hand, indeed, a semantic related to the burden of persuasion need to be
considered — conclude for the responsibility of the ambulance driver in the event

The uncertainty on Lisa's carefulness is considered as a failure to meet the burden of
persuasion on the claim careful (1isa). Consequently, the argument supporting this
claim is rejected, leaving space for the admissibility of the conflicting arguments.

Lesson 6_Logic_Programming

17

r15

rl6
[T
rl8
r19

r20 :

Let's continue the example in which Lisa, the ambulance driver, and Pino, the
pedestrian, were both considered responsible for the accident on the basis of
the available knowledge. Lisa now declares that she tried to stop the ambu-
lance, but the brake did not work. The ambulance is then sent to a mechanic,
who states that, even if the ambulance is new, there is a problem with the
brake system. In such a case, the manufacturer is called to prove that the
ambulance was not defective when delivered, i.e., the burden of proof on the
adequacy of the vehicle is on the manufacturer.

At this stage, the discovery of a defect in the ambulance would lead to the

discarding of Lisa's responsibility. Moreover, if the manufacturer fails to meet
his burden, it would share the responsibilities of the accident.

: harms(P1, P2), user(Pl, V), —working(V),

manufacturer(M, V), —defect_free(V) => responsible (M).
tried_to_brake(P), user(P, V), —working(V) => careful (P).
mechanic(M), claim(M, defect(V)) => —working (V).

—working (V), new(V) => —defect_free (V).

production_manager(P), claim(P, test_ok(V)) => defect_free(V)
test_.doc.ok (V) => undercut(rl8).

sup(rl6, rll).
bp(defect_free(V)).

f19
f20
f21
f22
f23
f24
f25

‘—> manufacturer(demers , ambulance).
‘=> tried_to_brake(lisa).

:—> mechanic(paul).

=> claim(paul, defect(ambulance)).

:—> new(ambulance).

‘—> production_manager(mike).

'=> claim(mike, test_ok(ambulance)).

However, Mike, the production officer of the ambulance manufacturer, declares that
every vehicle is deeply tested before the delivery and the vehicle at hand has been
tested. Anyway, there is no trace of documentation.

Lisa is free from every responsibility in the accident since her prudence is correctly
proved.

On the other hand, the manufacturer is found responsible for the accident.

Architecture

Lesson 6_Logic_Programming

18

OUTPUT INPUT
B
Human-Computer interaction APPLICATION
i =
provide explanations,< | L express goals,
outcomes = . desires, preferences
MAS 4" .E ; interaction g
infrastructure || *%F) - El protocol [&
s pe ‘g
(@ o DIMENSION
/@ Wy :
M { a agent
-—-J-,-i—.' e-institution T '
High-level 4 _ | planand
gKB —E .~ optimization
e S— A e —_—
e KB injection s bol '
- ub-symbolic \
,:;2}“2,‘?1‘(’,%2” (ontalogies, approaches |ENVIRONMENT
commonsense (ML/DL) DIMENSION
_ KB) KB extraction |
|| system knowledge =L |

raw data ==
(sensor, document)

T
“decisions/ commands to
actuators

This is a possible architecture to exploit the logic programming framework in order to
extend the model of nowadays Al applications. The important thing to note is that we
want to exploit this logical technology in sinergy with the sub-symbolic approach.
This because we have a lot of advantages adopting a logical behaviour, also
concerning the injection of ethical principles in the system.

The architecture takes also into account the interaction of the agent with the
institution framework in which norms and legal rules are stated and can be modified.

Then, the system can provide explainations, outcomes as well as receive goals,
desires or preferences from humans and convert them in a proper plan which can be
again a combination of symbolic and sub-symbolic techniques.

Lesson 6_Logic_Programming

19

