
Lesson 20

Deep Q-Learning (DQN)

Andrea Asperti 1

The problem of Q-learning

Q-learning exploits Bellman’s equation

Q∗(s, a) = Es′ [r0 + γmaxa′Q
∗(s ′, a′)]

We compute Q∗ via iterative updates:

Q i+1(s, a)︸ ︷︷ ︸
next
estimation

← Q i (s, a)︸ ︷︷ ︸
current
estimation

+α(r0 + γmaxa′Q
i (s ′, a′)− Q i (s, a)︸ ︷︷ ︸

recursive update

)

Q i → Q∗ when i →∞.

Not scalable!
Must compute Q(s, a) for every state-action pair.

Andrea Asperti 2

The problem of Q-learning

Q-learning exploits Bellman’s equation

Q∗(s, a) = Es′ [r0 + γmaxa′Q
∗(s ′, a′)]

We compute Q∗ via iterative updates:

Q i+1(s, a)︸ ︷︷ ︸
next
estimation

← Q i (s, a)︸ ︷︷ ︸
current
estimation

+α(r0 + γmaxa′Q
i (s ′, a′)− Q i (s, a)︸ ︷︷ ︸

recursive update

)

Q i → Q∗ when i →∞.

Not scalable!
Must compute Q(s, a) for every state-action pair.

Andrea Asperti 3

Deep Q-learning

Deep Q-learning: use a function approximator (a Neural
Network!) to estimate the optimal action-value function

Q(s, a, θ) ≈ Q∗(s, a)

θ are the function parameters to be learned.

Instead of taking a as input,
it is customary to return a
value for each possible ac-
tion a (the two functions are
isomorphic)

Andrea Asperti 4

The loss function

Given (s, a) the current Q-value estimate of the network

Q(s, a, θ)

The expected value, given by the Bellman equation is

Es′ [r0 + γmaxa′Q(s ′, a′, θ)]

We try to minimize their distance, to get the fixpoint

L(θ) = (Es′ [r0 + γmaxa′Q(s ′, a′)]− Q(s, a, θ))2

Andrea Asperti 5

Experience replay

For learning, we just need the loss function and its gradient

L(θ) = (Es′ [r + γmaxa′Q(s ′, a′)]− Q(s, a, θ))2

To compute it, we need transitions

(si , ai , ri ,Ti , si+1)

We can store these transitions in an experience memory, and replay
them at leisure during training (experience replay).

Better than learning from batches of consecutive samples because:

- samples tend to be correlated ⇒ inefficient learning

- great risk of introducing biases during learning

Andrea Asperti 6

Q-learning algorithm with experience replay

Playing Atari with DRL, Mnih et al. Nature 2015.

Andrea Asperti 7

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

The Atari Q-learning architecture

A single feed-
forward pass to
compute Q-values
for all actions from
the current state

Last layer has an
output for each
action a, returning
Q(s,a).

Number of ac-
tions between 4-18
depending on Atari
game

state: 84x84x4 stack of last 4 frames
(RGB→grayscale conversion, rescaling)

Andrea Asperti 8

Why stacking frames?

We need a sequence of frames to capture movement

As an alternative, you can use a LSTM layer (after processing the
state, and before computing Qvalues).

Andrea Asperti 9

Atari Games and Q-learning

The same network architec-
ture was applied to all games

Input are screen frames

Works well for reactive games,
not for planning

Recently extended to Aug-
mented Imagination (2017)

video

Andrea Asperti 10

https://arxiv.org/abs/1707.06203
https://arxiv.org/abs/1707.06203
https://www.youtube.com/watch?v=f25Jogzogz0

A note on rewards

Rewards are very different from game to game.

How can we use a same architecture?

The solution adopted in Playing Atari with DRL was to crop all
positive rewards to 1, and all negative rewards to -1.

The lesson to be learned seems to be that the entity of the
reward does not really matter: what matters is to distinguish
between positive, negative, and neutral moves.

Andrea Asperti 11

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

An alternative: RAM instead of screenshots

The RAM for the Atari 2600 console consists of 128 bytes!

We can directly exploit it as state observations, instead of video
screenshots: see Learning from the memory of Atari 2600

Andrea Asperti 12

https://arxiv.org/pdf/1605.01335.pdf

Next Arguments

Deep Q-learning improvements:

- Fixed Q-targets

- Double Q-learning

- Prioritized Experience Replay

- Dueling

- Noisy Networks

- Distributional RL

- Rainbow

Andrea Asperti 13

Next Arguments

Fixed Q-targets

Andrea Asperti 14

Fixed Q-targets

With Q-learning, we try to approximate the optimal target
Q-function Q∗, through progressive updates:

Q∗(s, a)− Q(s, a)

Moreover, we approximate the computation of Q∗(s, a) as
ro + maxa′Q(s ′, a′), giving us the q-learning update

r0 + γmaxa′Q(s ′, a′)︸ ︷︷ ︸
approximated
target Q∗

− Q(s, a)︸ ︷︷ ︸
current

estimation

The Q function is computed by a neural network Q(s, a,w).

Andrea Asperti 15

shared weights

In the loss function, the same newtork is used to provide two
different estimations of the Q-function:

r0 + γmaxa′Q(s ′, a′,w)︸ ︷︷ ︸
approximated
target Q∗

−Q(s, a,w)︸ ︷︷ ︸
current

estimation

At every step of training, the Q value shifts but also the “target
value” shifts.

We are getting closer to our target but the target is also moving,
that may lead to big oscillations in training.

Andrea Asperti 16

Fixed Q-targets

Use a separate network Q with fixed parameters for estimating
the TD target.

r0 + γmaxa′Q(s ′, a′)︸ ︷︷ ︸
approximated
target Q∗

− Q(s, a)︸ ︷︷ ︸
current

estimation

Periodically, copy the parameters from Q to Q, to update the
target network.

Andrea Asperti 17

Implementation

Implementing fixed q-targets is straightforward:

• create two (identical) networks: DQNetwork, TargetNetwork

• define a function to transfer parameters from DQNetwork to
TargetNetwork

• during training, compute the TD target using our target
network. Update the target network with the DQNetwork
every tau steps (tau is a user-defined hyper-parameter).

Andrea Asperti 18

Next Arguments

Double Q-learning

Andrea Asperti 19

Action values overestimation

The approximation of target action value is computed using a
maximum over actions:

r0︸︷︷︸
local reward for
taking action a

+ γ · maxa′Q(s ′, a′)︸ ︷︷ ︸
max Q-value over
all possible actions

Since the approximation is noisy, it is possible to prove that this
will eventually result in a positive bias, finally resulting in an
overestimation of the correct value.

Andrea Asperti 20

Decoupling action choice and its estimation

The Double Q-learning approach consists in decoupling the choice
of the action from its estimation, using two networks QA and QB .

1. Initialize QA,QB , s

2. repeat

3. choose a using ε,QA,QB ; observe r , s′

4. choose (e.g. random) between UPDATE-A and UPDATE-B

5. if UPDATE-A: # use QA to choose action, QB to estimate it

6. a∗ = arg maxaQA(s′, a)

7. QA(s, a)← QA(s, a) + α(r + QB(s, a∗)− QA(s, a))

8. else if UPDATE-B: # use QB to choose action, QA to estimate it

9. a∗ = arg maxaQB(s′, a)

10. QB(s, a)← QB(s, a) + α(r + QA(s, a∗)− QB(s, a))

11. s ← s′

12. until end

Andrea Asperti 21

https://papers.nips.cc/paper/3964-double-q-learning

Decoupling action choice and its estimation

If we use QA to select best action a∗ = arg maxaQ
A(s ′, a), the

value of QA(s ′, a∗) could be biased by the choice (we know it will
be large: it was the maximum!).

Since QB was updated on the same problem, but with a different
set of experience samples, QB(s ′, a∗) provides a better, unbiased
estimate for the value of action a∗.

Andrea Asperti 22

Next Arguments

Prioritized Experience Replay

Andrea Asperti 23

Prioritized Experience Replay

Prioritized Experience Replay (PER) exploits the idea is that some
experiences may be more important than others, and thus should
be replayed more frequently.

We want to give higher priority to transitions for which there is a
large difference between our prediction and the expected target.

For a transition t = (s, a, r ,F , s ′), its update is

δt = r + γmaxa′Q(s ′, a′)− Q(s, a)

and we set its priority to

pt = |δt|

Andrea Asperti 24

https://arxiv.org/abs/1511.05952

stochastic prioritization

The probability of being chosen for a replay is computed accoding
to the following rule:

Pt =
pαt∑
t p

α
t

If α = 0, all transistions have same probability; if α is large, it
priveleges transitions with high priority pt .

However, we are introducing a bias toward high-priority samples
(more chances to be selected), with a risk of over-fitting over the
small portion of experiences that we presume to be interesting.

Andrea Asperti 25

importance sampling weight

We can correct the bias with importance sampling weights.
If N is the dimension of the replay buffer, then

wt = (N · Pt)
−β

that compensate the non-uniform probabilities Pt when β = 1 (if
some transition has a high probability, we reduce its weight).

These weights are folded into the Q-learning update by using wtδt
instead of δt .

For stability reasons, weights are normalized by 1/(maxtwt) so
that they only scale the update δt downwards.

β is initialized to 1 and goes to 0 during training.

Andrea Asperti 26

Next Arguments

Dueling

Andrea Asperti 27

Advantage

Each Q-value Q(s, a) estimates how good it is to take action a in
state s: it depends both on the action a and the value of the given
state s.

We can decompose Q(s, a) as the sum of:

- V(s): the value of being at state s

- A(s,a): the advantage of taking action a in state s, measuring
how much better is to take action a versus all other possible
actions at that state.

Q(s, a) = V (s)︸︷︷︸
value

+ A(s, a)︸ ︷︷ ︸
advantage

Andrea Asperti 28

Dueling DQN

Dueling Network Architectures (DDQN) split the computation of
V (s) and A(s, a) in two different streams:

Andrea Asperti 29

https://arxiv.org/pdf/1511.06581.pdf

Dueling DQN

Intuitively, the dueling architecture can learn which states are (or
are not) valuable, without having to learn the effect of each action
for each state.

This is particularly useful in states where actions do not affect the
environment in any relevant way.

Conversely, in states where the action is relevant, it can focus on
the advantage without caring for the current evaluation of the
state.

Andrea Asperti 30

Saliency maps on Enduro

For estimating
Value, the net-
work focus on:

I the horizon

I the score

no car close by:
action is not rel-
evant

pay attention to
the car in front:
action is crucial

Saliency maps (the orange blurs) are computed with Jacobians (partial derivatives) on

input images. See: Deep Inside Convolutional Networks: Visualising Image

Classification Models and Saliency Maps

Andrea Asperti 31

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034

Naif Aggregation

Naif aggregation:

Q(s, a) = V (s) + A(s, a)

Problem: given Q(s, a), it is impossible to recover V (s) and
A(s, a) and hence it is difficult to distribute the error during
backpropagation (identifiability).

Andrea Asperti 32

Aggregating Value and Advantage

(((((((((((((((

Q(s, a) = V (s) + A(s, a)

Force A to have zero advantage for the best action a∗:

Q(s, a) = V (s) + A(s, a)−maxaA(s, a)

If a∗ = argmaxaA(s, a), Q(s, a∗) = V (s) and A(s, a∗) = 0.

Andrea Asperti 33

Alternative: mean instead of max

Experimentally, replacing max with mean seem to work better:

Q(s, a) = V (S) + A(s, a)−meanaA(s, a)

Subtracting the mean value helps to improve stability during
training.

Andrea Asperti 34

Next Arguments

Noisy Networks

Andrea Asperti 35

Noisy Networks

Noisy Networks are characterized by noisy dense layers,
combining a deterministic and a noisy stream:

y = b + Wx︸ ︷︷ ︸
usual layer

+ (bnoisy � εb + (Wnoisy � εw)x)︸ ︷︷ ︸
noisy stream

- W , b,Wnoisy , bnoisy are learned parameters

- εb, εw are randomly generated

This layer is used in substitution of any standard dense layer
(doubling the number of parameters).

Andrea Asperti 36

https://arxiv.org/abs/1706.10295

Random exploration

The purpose of the noise is to augment the randomicity in the
choice of actions.

Since noisy-weights are learned, and the resulting noise is state
dependent, this allows the network to randomly explore the
environment at different rates in different parts of the state space.

Noisy networks replace and seem to work better than the ε-greedy
strategy.

Andrea Asperti 37

Next Arguments

Distributional RL

Andrea Asperti 38

Distributional RL

Distributional RL try to learn the probability distribution of the
future cumulative reward, instead of the traditional approach of
modeling the expectation of this return.

Specifically, DRL addresses the random return Z whose
expectation is the value Q.

Andrea Asperti 39

http://proceedings.mlr.press/v70/bellemare17a/bellemare17a.pdf

The cumulative reward random variable Z

Slide from Distributional Reinforcement Learning by R.Munos.

Andrea Asperti 40

https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Distributional Bellman

Let a∗ be the best possible action in s’.
The Bellman equation is

Q(x , a) = R(x , a) + γQ(x ′, a∗)

Similarly,

Z (x , a) = R(x , a) + γZ (s ′, a∗)

Andrea Asperti 41

discretization

The distribution is discretized over a support in a given range
between Vmin and Vmax using a fixed number of bins (e.g. 51).

(1) Z at s ′ (2) discounted Z (3) shift by r (4) project

The loss between the two distribution can be computed with
KL-divergence.

Andrea Asperti 42

C51-pseudocode

Suggested reading: Distributional Bellman and the C51 Algorithm

Andrea Asperti 43

https://flyyufelix.github.io/2017/10/24/distributional-bellman.html

Next argument

Rainbow

Andrea Asperti 44

Rainbow

Andrea Asperti 45

