Lesson 8

e Examples of real CNNs
e Transfer Learning
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AlexNet

AlexNet Architecture (Krizhevsky, Sutskever e Hinton), winner of a
NIPS contest in 2012.
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VGG

VGG 16 (Simonyan e Zisserman). 92.7 accuracy (top-5) in ImageNet (14
millions images, 1000 categories).
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Picture by Davi Frossard: VGG in TensorFlow



https://www.cs.toronto.edu/~frossard/post/vgg16/

Inception V3

Inception V3
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https://arxiv.org/abs/1512.00567

Inception modules

The networks is composed of inception modules (towers of nets):

Inception

Video from the Udacity course "Deep Learning”
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https://www.youtube.com/watch?v=VxhSouuSZDY

Variants

The point is to induce the net to learn different filters.

Many variants proposed and used over years:
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The inception hypothesis

Remember that normal convolutional kernels are 3D,
simultaneously mapping correlations and
correlations.

It can be better to decouple them, independently looking for
cross-channel correlations (via 1 x 1 convolutions), and spatial 2D
convolutions.

Inception modules can be understood as an intermediate step
between a regular convolution and a depthwise separable
convolution (a depthwise convolution followed by a pointwise
convolution).
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Depthwise separable convolutions

Input Kernel

Depthwise Separable Convolutions

Output

Traditional Convolutions

Repeat C , times and stack

—J

out

Apply C, unary convolutions
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Depthwise separable convolutions

Suppose we have a convolutional layer with a 3 x 3 kernel, 16
input channels and 32 output channels. The input is convolved 32
times with different kernels of dimension 3 x 3 x 16 = 144: we
have a total of 32 x 144 = 4608 parameters.

In a on the same example, we
first traverse the 16 channels with a different 3x3 kernel, and then
we apply 32 different kernels with dimension 1 x 1 x 16. The total
number of parameters is 16 x 3 x 3+ 32 x 1 x 1 x 16 = 656.
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Xception and MobileNet

Depthwise separable convolutions have been made popular by their
adoption in

e Xception

e MobileNet - a class of “light” models conceived to be
deployed on mobile devices.
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
https://arxiv.org/abs/1704.04861

Residual Learning

Another recent topic is residual learning.

X
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Instead of lerning a function F(x) you try to learn F(x) + x.
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https://arxiv.org/pdf/1512.03385.pdf

The right intuition

weight layer

weight layer
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Residual networks

you add a residual shortcut
connection every 2-3 layers

i

il

Inception Resnet is an example
of a such an architecture
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Why Residual Learning works?

Not well understood yet.

The usual explanation is that during back propagation, the
gradient at higher layers can easily pass to lower layers,
withouth being mediated by the weight layers, which may
cause vanishing gradient or exploding gradient problem.
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Sum or concatenation?

The “sum” operation can be interpreted in a liberal way.
A common variant consists in concatenating instead of adding
(usually along the channel axis):

weight layer weight layer
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Efficient Net

ConvNets essentially grow in three directions:
- Layers: the number of layers
- Channels: the number of channels for layers
- Resolution: the spatial width of layers

Is there a principled method to scale up ConvNets that can achieve
better accuracy and efficiency?

Question addressed in EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks
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https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf

Efficient Net

EfficientNet-B7

84
- -0
Amoehallet-Ae = === AmoebaNet-
27 NASNet-A ..=*"" SENet
<82 e Ve
s /4 e et
> et
g _.-=*"" ResNeXt-101
3 80 "
o nception-ResNet-v2
<
o ?
) ]
E 8 1 H eResNet-152 Topl Acc. #Params
k ResNet-152 (He etal, 2016) | 77.8% 60M
S " -DenseNet-201 Fyeeh (.,1 ) 78.8% 78M
= B - ResNeXt-101 (Xie etal, 2017)| 80.9% 34M
ET61 1 - o Effici B3 81.1% 1M
= 1 ResNet-50 SENet (Hu et al., 2018) 827%  146M
I NASNet-A (Zoph et al., 2018) | 82.7% 89M
I $nception-v2 EfficientNet-B4 82.6% 19M
ld nception-v. GPipe (Huang ctal, 2018) T | 84.3%  556M
NASNet-A EfficientNet-B7 84.4% 66M
. Not plotted
ResNet-34
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

C

Andrea Asperti

17



Next arguments

Transfer Learning

Imagenet
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Reusing Knowledge

We learned that the first layers of convolutional networks for
computer vision compute feature maps of the original image of
growing complexity.

The filters that have been learned (in particular, the most primitive
ones) are likely to be
They have been trained on a and are

probably very good.

It is a good idea to try to reuse them for other classification tasks.
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Transfer Learning with CNNs

Transfer Learning with CNNs
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5- 6
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When Transfer Learning makes sense

transferring knowledge from problem A to problem
B makes sense if
e the two problems have “similar” inputs

e we have much more training data for A
than for B
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What we may expect

Faster and more accurate training

higher asymptote
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