
Lesson 6

• Overfitting

• Entropy, CrossEntropy,
Kullabck-Leibler divergence
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Next argument

Overfitting
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Overfitting and underfitting

overfitting the model is too complex and specialized over the
peculiarities of the samples in the training set

underfitting the model is too simple and does not allow to express
the complexity of the observations.

remark

Deep models are good at fitting, but the real goal is generalization
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Overfitting and model complexity
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About overfitting

Ways to reduce overfitting

• Collect more data
• Reduce the model capacity
• Early stopping
• Regularization, e.g. Weight-decay
• Model averaging
• Data augmentation
• Dropout
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Dropout

Idea: “cripple” the neural
network stocastically removing
hidden units

I during training, at each
iteration hidden units are
disabled with probability p
(e.g. 0.5)

I hidden units cannot
co-adapts with other units

I similar to train many
networks and averaging
between them
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Dropout

Idea: “cripple” the neural
network stocastically removing
hidden units

I during training, at each
iteration hidden units are
disabled with probability
1-p (e.g. 0.5)

I hidden units cannot
co-adapts with other units

I similar to train many
networks and averaging
between them
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Geometric averaging

At each stage of training, only the crippled network is trained by
means of backpropagation. Then, the omitted units are reinserted
and the process repeated (hence weights are shared among the
crippled networks).

At test time, we weight each unit with its expectaction p.

For a single layer, this is equivalent to take a geometric average
among all different crippled networks.
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A form of regularization

With Dropout, we are randomly sampling from an exponential
number of different architectures
- all architectures share weights

Sharing weights means that every model is very strongly
regularized, by all the other models
- A good alternative to L2 or L1 penalties that pull the weights
towards zero.
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Next argument

Demonstrating Overfitting
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Example 1: The IMDB Movie reviews data set

A Dataset of 25,000 movies reviews from IMDB, labeled by
sentiment (positive/negative).

Each review is a sequence of words in a vocabulary of 10000
different words. Each word is encoded by an index (integer) in the
range [0,9999].

Words are indexed by overall frequency in the dataset; for instance,
the integer ”3” encodes the 3rd most frequent word in the data.

This allows for quick filtering operations such as: “only consider
the top 10,000 most common words, but eliminate the top 20
most common words”.
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Bag of words approach

Encode each review r as a boolean vector xr of dimension 10000
(number of different words).

We neglect the order and the multiplicity.

xr [i ] = 1 if the word with index i appears in the review r , and 0
otherwise.

DEMO
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https://colab.research.google.com/drive/1CX4zWg0LCCuNDpY4Z73UwWiToaMy4pZo


Example 2: CIFAR-10

DEMO
(data augmentation)

Suggested reading:

Do CIFAR-10 Classifiers Generalize to CIFAR-10?
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https://arxiv.org/abs/1806.00451


Next argument

Activation and loss functions
for classification
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Sigmoid

When the result of the network is a value between 0 and 1, e.g. a
probability for a binary classification problem, it is customary to
use the sigmoid function

σ(x) =
1

1 + e−x
=

ex

1 + ex

as activation funtion.
If

P(Y = 1|x) = σ(f (x)) =
ef (x)

1 + ef (x)

then

P(Y = 0|x) = 1− σ(f (x)) =
1

1 + ef (x)
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Softmax

When the result of the network is a probability distribution, e.g.
over K different categories, the softmax function is used as
activation:

softmax(j , x1, . . . , xk) =
exj∑k
j=1 e

xj

It is easy to see that

0 < softmax(j , x1, . . . , xk) < 1

and most importantly
k∑

j=1

softmax(j , x1, . . . , xk)

since we expect probablilites to sum up 1.
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Softmax vs Sigmoid

It is easy to prove that for any c ,

softmax(j , x1 + c, . . . , xk + c) = softmax(j , x1, . . . , xk)

in particular, we can always assume one argument (corresponding
to a “reference category”) is null, taking e.g. c = −xk .

In the binary case, we would be left with a single argument, and in
particular

σ(x) = softmax(x , 0) =
ex

ex + e0
=

ex

ex + 1
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Next arguments

Cross entropy
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Loss functions for probability distributions

If the intended output of the network is a probability distribution,
we should find ways to compare it with the ground truth
distribution (usually, but not necessarily, a categorical distribution).
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Loss functions

What loss functions should we
use for comparing probability
distributions?

We could treat them as “normal functions”, and use e.g. quadratic
distance between true and predicted probabilities.

Can we do better? For instance, in logistic regression we do not
use mean squared error, but use negative loglikelihood. Why?
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Comparing distributions

Probability distributions can be compared according to many
different metrics.
There are two main techniques:

I you consider their difference P - Q (e.g. Wasserstein
distance)

I you consider their ratio P/Q (e.g. Kullback Leibler
divergence)
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Kullback-Leibler divergence

The Kullback-Leibler divergence DKL(P‖Q) between two
distributions Q and P, is a measure of the information loss due to
approximating P with Q:

DKL(P‖Q) =
∑
i

P(i)log
P(i)

Q(i)

=
∑
i

P(i)(logP(i)− logQ(i))

= −H(P)︸ ︷︷ ︸
entropy

−
∑
i

P(i)logQ(i)

We call Cross-Entropy between P and Q the quantity

H(P,Q) = −
∑
i

P(i)logQ(i) = H(P) + DKL(P‖Q)

Andrea Asperti 23



Minimizing the cross entropy

Let P be the distribution of training data, and Q the distribution
induced by the model.

We can take as our learning objective the minimization of the
Kullback-Leibler divergence DKL(P‖Q).

Since, given the training data, their entropy H(P) is constant,
minimizing DKL(P‖Q) is equivalent to minimizing the
cross-entropy H(P,Q) between P and Q.
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Cross entropy and log-likelihood

Let us consider the case of a binary classification.

Let Q(y = 1|x) the probability that x is classified 1.
Hence, Q(y = 0|x) = 1− Q(y = 1|x).

The real (observed) classification is P(y = 1|x) = y and similarly
P(y = 0|x) = 1− y .

So we have

H(P,Q) = −
∑
i

P(i)logQ(i)

= −y log(Q(y = 1|x))− (1− y)log(1− Q(y = 1|x)

That is just the (negative) log-likelihood!
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Cross entropy and log-likelihood

Predicted log-likelyhood that X has label Y

logQ(Y |X )

We want to split it according to the possibile labels ` of Y:

logQ(`1|X ) + logQ(`2|X ) . . . logQ(`n|X )

but weighted in which way?

According to the actual probability that X has label `:

P(`1|X )logQ(`1|X ) + P(`2|X )logQ(`2|X ) . . .P(`n|X )logQ(`n|X )

or ∑
`

P(`|X )log(Q(`|X )
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Summing up

For binary classification use:

- sigmoid as activation function

- binary crossentropy (aka log-likelihod) as loss function

For multinomial classification use:

- softmax as activation function

- categorical crossentropy as loss function
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Appendix: Entropy recap

The entropy H(X ) of a random variable X is

H(X ) = −
n∑

i=1

P(X = i)log2P(X = i)

where n is the number of possible values of X .

Entropy measures the degree of
impurity of the information. It
is maximal when X is uniformly
distributed over all values, and
minimal (0) when it is concen-
trated on a single value.
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Information Theory (Shannon)
Entropy can be understood as the amount of information produced
by a stochastic source of data.

Information is associated with the probability of each data (the
“surprise” carried by the event):
I an event with probability 1 carries no information: I (1) = 0
I given two independent events with probabilities p1 and p2

their joint probability is p1p2 but the information acquired is
the sum of the informations of the two independent events, so

I (p1p2) = I (p1) + I (p2)

It is hence natural to define

I (p) = −log(p)
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Code Theory (Shannon)

Entropy also measures the average number of bits required to
transmit outcomes produced by stochastic process X .

Suppose to have n events with the same probability. How many
bits do you need to encode each possible outcome?

log(n)

In this case,

H(X ) = −
∑n

i=1 P(X = i)log2P(X = i)
= −

∑n
i=1 1/n log2(1/n)

= log(n)

If events are not equiprobable we can do better!!!
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Related notions:

Entropy of X

H(X ) = −
n∑

i=1

P(X = i)log2P(X = i)

Conditional Entropy of X given a specific Y = v

H(X |Y = v) = −
n∑

i=1

P(X = i |Y = v)log2P(X = i |Y = v)

Conditional Entropy of X given Y
(weighted average over all m possible values of Y)

H(X |Y ) =
m∑

v=1

P(Y = v)H(X |Y = v)

Information Gain between X and Y :
I (X ,Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )
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